测绘通报 ›› 2025, Vol. 0 ›› Issue (11): 34-39.doi: 10.13474/j.cnki.11-2246.2025.1106

• 学术研究 • 上一篇    下一篇

融合深度特征的高光谱图像小样本分类方法

秦进春1,2, 裴航3, 刘冰3, 余岸竹3, 陈俊铭3, 范俊忆3   

  1. 1. 智能空间信息国家级重点实验室, 北京 100029;
    2. 西安测绘研究所, 陕西 西安 710054;
    3. 信息工程大学地理空间信息学院, 河南 郑州 450001
  • 收稿日期:2025-03-20 发布日期:2025-12-04
  • 通讯作者: 裴航。E-mail:peihang315@163.com
  • 作者简介:秦进春(1989—),男,博士,助理研究员,主要研究方向为多源遥感数据智能处理与应用。E-mail:qjc20@tsinghua.org.cn
  • 基金资助:
    国家自然科学基金(42401501)

Few-shot hyperspectral image classification with depth feature fusion

QIN Jinchun1,2, PEI Hang3, LIU Bing3, YU Anzhu3, CHEN Junming3, FAN Junyi3   

  1. 1. National Key Laboratory of Intelligent Spatial Information, Beijing 100029, China;
    2. Xi'an Research Institute of Surveying and Mapping, Xi'an 710054, China;
    3. Institute for Geospatial Information, Information Engineering University, Zhengzhou 450001, China
  • Received:2025-03-20 Published:2025-12-04

摘要: 针对高光谱图像分类中面临的小样本问题,本文提出了高光谱图像深度特征提取方法。利用预训练基础模型提取高光谱图像的深度图,作为先验信息与光谱信息进行融合分类。为了充分利用高光谱图像中丰富的光谱信息,采用滑窗法沿着光谱维度提取多个深度图,堆叠后称为深度特征。该方法基于多源遥感图像融合思路,但无需获取精确配准的多源遥感图像,具有即插即用的优点。3个高光谱图像上大量的分类试验验证了该方法的有效性。

关键词: 高光谱图像, 深度特征提取, 小样本分类, 基础大模型

Abstract: A depth feature extraction method for hyperspectral image classification is proposed to address the small sample problem.The proposed method first utilizes a pre-trained base model to extract depth maps from hyperspectral images as prior information,which is then fused with spectral information for classification.To fully exploit the rich spectral information in hyperspectral images,a sliding window approach is employed to extract multiple depth maps along the spectral dimension,which are then stacked to form depth features.The method is based on the concept of multi-source remote sensing image fusion but does not require precisely registered multi-source remote sensing images,offering a plug-and-play advantage.Extensive classification experiments on three hyperspectral image datasets validate the effectiveness of the method.

Key words: hyperspectral image, depth feature extraction, few-shot classification, foundation large model

中图分类号: