测绘通报 ›› 2025, Vol. 0 ›› Issue (11): 40-46.doi: 10.13474/j.cnki.11-2246.2025.1107

• 学术研究 • 上一篇    下一篇

基于改进YOLOv11的遥感影像立交桥识别算法

黄传曙, 李佳田, 杨琨   

  1. 昆明理工大学国土资源工程学院, 云南 昆明 650093
  • 收稿日期:2025-04-03 发布日期:2025-12-04
  • 通讯作者: 李佳田。E-mail:ljtwcx@163.com
  • 作者简介:黄传曙(2000—),男,硕士生,主要从事摄影测量与模式识别相关研究。E-mail:15331471675@163.com
  • 基金资助:
    国家自然科学基金(41561082)

An improved YOLOv11-based algorithm for interchange bridge recognition in remote sensing imagery

HUANG Chuanshu, LI Jiatian, YANG Kun   

  1. School of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China
  • Received:2025-04-03 Published:2025-12-04

摘要: 针对遥感图像中目标尺度差异大、背景复杂导致立交桥目标检测精度低的问题,本文以YOLOv11为基础框架,引入超图计算挖掘跨层次特征间的内在联系,并提出基于门控机制的并行处理通道选择模块,动态地筛选并强化与任务相关的特征,提升模型对关键信息的聚焦能力;此外,在回归部分嵌入可学习缩放因子构建回归优化检测头,以优化目标框的自适应能力,提升网络性能。试验结果表明,在Dior数据集的立交桥类别影像上,本文算法的mAP_50和mAP_50:95分别达80.5%和53.1%,优于对比算法,有效提高了复杂背景下立交桥目标的检测精度和稳健性。

关键词: 遥感影像, 立交桥, 目标检测, YOLOv11, 超图, 门控机制

Abstract: In response to the challenges of large target scale differences and complex backgrounds leading to low detection accuracy of overpasses in remote sensing images,this paper proposes a solution based on the YOLOv11 framework.The approach introduces hypergraph computing to explore the intrinsic relationships between cross-layer features,and presents a parallel processing channel selection module based on a gating mechanism that dynamically selects and strengthens task-relevant features,enhancing the model's ability to focus on key information.Additionally,a learnable scaling factor is embedded in the regression part to construct a regression-optimized detection head,improving the adaptive ability of bounding box predictions and enhancing network performance.Experimental results show that,on the Dior dataset for the overpass category,the proposed algorithm achieves mAP_50 and mAP_50:95 of 80.5%and 53.1%,respectively,outperforming the comparison algorithms,effectively improving the detection accuracy and robustness of overpass targets in complex backgrounds.

Key words: remote sensing imagery, overpass, object detection, YOLOv11, hypergraph, gating mechanism

中图分类号: