测绘通报 ›› 2025, Vol. 0 ›› Issue (11): 47-52,61.doi: 10.13474/j.cnki.11-2246.2025.1108

• 学术研究 • 上一篇    下一篇

无人机混合式建模方法及其滇中高原复杂山地实证分析

张弛1, 甘淑1,2, 袁希平2,3, 罗为东1,2, 马冲1, 李艺1   

  1. 1. 昆明理工大学国土资源工程学院, 云南 昆明 650093;
    2. 云南省高校高原山地空间信息测绘技术应用工程研究中心, 云南 昆明 650093;
    3. 滇西应用技术大学云南省高校山地实景点云数据处理及应用重点试验室, 云南 大理 671006
  • 收稿日期:2025-04-28 发布日期:2025-12-04
  • 通讯作者: 甘淑。E-mail:1193887560@qq.com
  • 作者简介:张弛(2002—),男,硕士生,主要从事无人机山地地貌数字化应用研究。E-mail:462446975@qq.com
  • 基金资助:
    国家自然科学基金(62266026);深地国家科技重大专项(2024ZD1001405)

UAV-HSfM modeling method and its empirical analysis in the complex mountainous areas of central Yunnan Plateau

ZHANG Chi1, GAN Shu1,2, YUAN Xiping2,3, LUO Weidong1,2, MA Chong1, LI Yi1   

  1. 1. School of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China;
    2. Plication Engineering Research Center, Spatial Information Surveying and Mapping Technology in Plateau and Mountainous Areas Set by Universities in Yunnan Province, Kunming 650093, China;
    3. Key Laboratory of Mountain Real Scene Point Cloud Data Processing and Applications for Universities, West Yunnan University of Applied Science, Dali 671006, China
  • Received:2025-04-28 Published:2025-12-04

摘要: 运动恢复结构(SfM)算法作为三维重建技术中的一个关键技术,结合无人机影像可实现场景的三维重建。针对无人机影像三维重建中传统增量式SfM(ISfM)误差累积和全局式SfM(GSfM)优化复杂度高的问题,本文提出了一种无人机混合式建模方法(UAV-HSfM),先利用全局式算法估计相机旋转,再通过增量式算法计算相机位置,实现三维重建方法的优化。研究以滇中高原山地为试验区,结果表明:①该方法特征提取更稳定;②稀疏点云兼具数量完整性与几何精度;③高程均方根误差为0.056 m,有显著的提升,且误差分布更集中。综上而言,本文提出的UAV-HSfM方法,有效融合了GSfM和ISfM的优点,显著提升了复杂山地的三维重建精度。

关键词: 三维重建, 全局式SfM, 增量式SfM, UAV-HSfM, 无人机影像

Abstract: As a key technique within 3D reconstruction technology,the structure from motion (SfM) algorithm enables 3D scene reconstruction when integrated with UAV imagery.To address the issues of error accumulation in traditional incremental SfM(ISfM) and the high computational complexity of global SfM (GSfM) optimization in drone-based 3D reconstruction,this paper proposes a hybrid drone modeling method (UAV-HSfM). This approach first estimates camera rotations using a global algorithm and then computes camera positions through an incremental algorithm,thereby optimizing the 3D reconstruction process.The study was conducted in a mountainous test area in the central Yunnan Plateau.The results demonstrate that:①The proposed method achieves more stable feature extraction;②The sparse point cloud exhibits both completeness in quantity and geometric accuracy; ③The elevation root mean square error (RMSE) of 0.056 m shows significant improvement,with a more concentrated error distribution.In conclusion,the UAV-HSfM method effectively combines the advantages of GSfM and ISfM,significantly enhancing the accuracy of 3D reconstruction in complex mountainous terrains.

Key words: 3D reconstruction, global SfM, incremental SfM, UAV-HSfM, UAV imagery

中图分类号: