测绘通报 ›› 2025, Vol. 0 ›› Issue (11): 70-77,123.doi: 10.13474/j.cnki.11-2246.2025.1111

• 学术研究 • 上一篇    下一篇

融合时序InSAR与PSO-SVM模型的滑坡易发性评价

尚雪巍1, 杨瑞2, 陈裕汉3, 高伏芳4   

  1. 1. 甘肃省张掖市自然资源局, 甘肃 张掖 734000;
    2. 昆明理工大学国土资源工程学院, 云南 昆明 650093;
    3. 滇西应用技术大学地球科学与工程学院, 云南 大理 671009;
    4. 云南南方地勘工程有限公司, 云南 大理 671009
  • 收稿日期:2025-05-21 发布日期:2025-12-04
  • 通讯作者: 杨瑞。E-mail:2057638985@qq.com
  • 作者简介:尚雪巍(1974—),男,高级工程师,主要从事自然资源调查、遥感监测、工程测量等工作。E-mail:1363910891@qq.com
  • 基金资助:
    国家自然科学基金地区基金项目(41961053)

Evaluation of landslide susceptibility by integrating time-series InSAR and PSO-SVM models

SHANG Xuewei1, YANG Rui2, CHEN Yuhan3, GAO Fufang4   

  1. 1. Zhangye Municipal Bureau of Natural Resources, Zhangye 734000, China;
    2. Faculty of land and Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China;
    3. School of Earth Science and Engineering, West Yunnan University of Applied Sciences, Dali 671009, China;
    4. Yunnan Southern Geological Exploration Engineering Co., Ltd., Dali 671009, China
  • Received:2025-05-21 Published:2025-12-04

摘要: 针对现有滑坡编目更新不及时,以及滑坡评价过程中缺乏动态因子等问题,本文以云南省弥渡县为例,利用SBAS-InSAR技术获取升降轨地表形变信息,结合高分辨率光学影像、坡度等进行滑坡识别,更新现有滑坡编目。并在坡度、坡向等13个静态因子的基础上,引入地表形变速率作为动态因子,基于PSO-SVM模型开展滑坡易发性评价。结果表明:①研究区升降轨监测结果无论是在形变速率上,还是形变区域上都具有明显差异,而这主要与卫星轨道几何差异及地形特征等因素有关。②联合升降轨数据可有效克服单轨数据带来的局限性,从而提高滑坡识别的全面性和准确性。③融入动态因子的滑坡评价结果精度更高,其AUC、精确率、召回率和F1分数分别为0.886、0.847、0.851和0.855。该方法可为弥渡县滑坡防控预警提供一定参考。

关键词: 滑坡易发性评价, SBAS-InSAR, PSO-SVM模型, 弥渡县

Abstract: To address the issues of outdated landslide inventories and the lack of dynamic factors in the landslide susceptibility assessment process,this study takes Midu county,Yunnan province,as a case study.Surface deformation information from ascending and descending orbits was retrieved using the SBAS-InSAR technique.Combined with high-resolution optical imagery and slope data,landslides were identified to update the existing landslide inventory.In addition,based on 13 static conditioning factors such as slope and aspect,surface deformation rate was introduced as a dynamic factor,and a PSO-SVM model was employed to conduct landslide susceptibility assessment.The results indicate that:①The monitoring results from ascending and descending orbit in the study area exhibit significant differences both in deformation rates and in the spatial extent of deformation.These discrepancies are primarily attributed to variations in satellite orbit geometry as well as local topographic characteristics;②Integrating ascending and descending orbit datasets effectively overcomes the limitations of single-orbit observations,thereby improving the comprehensiveness and accuracy of landslide identification;③Incorporating dynamic factors yields higher assessment accuracy,with AUC,precision,recall,and F1-score reaching 0.886,0.847,0.851,and 0.855,respectively.This approach provides valuable reference for landslide prevention and early warning in Midu county.

Key words: landslide susceptibility assessment, SBAS-InSAR, PSO-SVM model, Midu county

中图分类号: