测绘通报 ›› 2025, Vol. 0 ›› Issue (11): 91-98.doi: 10.13474/j.cnki.11-2246.2025.1114

• 学术研究 • 上一篇    下一篇

2000—2023年陕西省植被NPP时空趋势及驱动机制

常德娥, 魏海霞, 陈利燕   

  1. 广东工贸职业技术学院, 广东 广州 510510
  • 收稿日期:2025-06-30 发布日期:2025-12-04
  • 作者简介:常德娥(1981—),女,硕士,讲师,主要研究方向为GIS技术及应用。E-mail:357243596@qq.com
  • 基金资助:
    国家级职业教育教师教学创新团队项目(教师函〔2023〕9号); 2024年度普通高校重点科研平台和项目(2024KCXTD086)

Spatio-temporal trends and driving mechanisms of vegetation NPP in Shaanxi province from 2000 to 2023

CHANG Dee, WEI Haixia, CHEN Liyan   

  1. Guangdong Polytechnic of Industry and Commerce, Guangzhou 510510, China
  • Received:2025-06-30 Published:2025-12-04

摘要: 基于长时序遥感数据定量分析陕西省植被净初级生产力(NPP)的时空变化及驱动机制,对评估区域生态系统稳定性和探明碳循环规律至关重要。本文利用2000—2023年MODIS NPP及多源数据,综合应用Sen趋势分析、Hurst指数、偏相关分析、残差分析和地理探测器等方法,以像元尺度解析陕西省植被NPP时空动态及驱动因素。2000—2023年NPP呈显著增长趋势,增速为8.19 gC·m2·a-1。NPP空间分布呈“南高北低”,97.63%区域增长;Hurst指数表明,99.15%区域未来将持续改善。降水与气温影响的空间异质性显著(陕北水热协同,关中/陕南气温主导),人类活动对76.26%区域的植被恢复有促进作用。蒸散发(ET)、降水和地貌类型是主导驱动因子,其中ET∩降水与ET∩地貌的交互作用解释力最强。土地利用/人口密度∩ET(q>83%)、土地利用/人口密度∩降水(q>74%)的强交互效应表明,植被NPP变化是自然因子与社会经济因子深度耦合的结果。

关键词: Hurst指数, 偏相关分析, Sen趋势分析, 残差分析, 地理探测器

Abstract: Quantitatively analyzing the spatio-temporal variations and driving mechanisms of vegetation net primary productivity (NPP) in Shaanxi province based on long-term remote sensing data is crucial for assessing regional ecosystem stability and elucidating carbon cycle dynamics.Utilizing MODIS NPP products and multi-source data from 2000 to 2023,this study integrated Sen's trend analysis,the Hurst index,partial correlation analysis,residual analysis,and the geodetector method to analyze the spatio-temporal dynamics and driving factors of vegetation NPP in Shaanxi province at the pixel scale.NPP showed a significant increasing trend from 2000 to 2023,with a growth rate of 8.19 gC·m-2·a-1.The spatial distribution of NPP showed higher values in the south and lower values in the north; 97.63% of the area exhibited increasing trends.The Hurst index indicated that the improving trend would persist in 99.15% of the region.The spatial heterogeneity of precipitation and temperature impacts was significant (positive synergy in Northern Shaanxi,temperature dominance in Guanzhong/Southern Shaanxi). Human activities promoted vegetation restoration in 76.26%of the area.Evapotranspiration (ET),precipitation,and landform type are the dominant driving factors.Among their interactions,ET∩precipitation and ET ∩ landform exhibite the strongest explanatory power.The strong interaction effects of land use/population density ∩ ET (q>83%) and∩precipitation (q>74%) indicate that changes in vegetation NPP result from the deep coupling of natural and socioeconomic factors.

Key words: Hurst index, partial correlation analysis, Sen trend analysis, residual analysis, geodetector

中图分类号: