测绘通报 ›› 2025, Vol. 0 ›› Issue (11): 99-103.doi: 10.13474/j.cnki.11-2246.2025.1115

• 学术研究 • 上一篇    下一篇

基于三维高斯基元场景表示的机器人稠密RGB-D SLAM算法

张郭1, 卫玲1, 何胜喜2,3   

  1. 1. 重庆科创职业学院智能制造与机器人学院, 重庆 402160;
    2. 重庆大学机械传动国家重点实验室, 重庆 400044;
    3. 重庆长安汽车股份有限公司, 重庆 400023
  • 收稿日期:2024-12-31 发布日期:2025-12-04
  • 作者简介:张郭(1982—),男,副教授,高级实验师,主要研究方向为自动化控制技术等。E-mail:zg198207@163.com
  • 基金资助:
    国家自然科学基金(52005057)

Robot dense RGB-D SLAM algorithm based on 3D Gaussian primitive scene representation

ZHANG Guo1, WEI Ling1, HE Shengxi2,3   

  1. 1. Intelligent Manufacturing and Robotics College of Chongqing Science Techence Innovation Vocational College, Chongqing 402160, China;
    2. State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China;
    3. Chongqing Changan Automobile Co., Ltd., Chongqing 400023, China
  • Received:2024-12-31 Published:2025-12-04

摘要: 稠密即时定位与地图构建(SLAM)是机器人中至关重要的技术。近期有关三维高斯溅射技术的研究表明,利用多个不同位姿的相机,可以实现高质量的场景重建与实时渲染。在此背景下,本文将三维高斯溅射技术引入SLAM,通过三维高斯基元对场景进行表征,利用RGB-D相机实现了稠密视觉SLAM算法。该算法克服了以往基于辐射场表示的局限性,特别是在快速渲染与优化、识别先前建图区域,以及通过添加更多高斯进行结构化地图扩展方面。大量试验结果表明,本文提出的稠密RGB-D SLAM算法在相机姿态估计、地图构建与新视图合成方面,比现有算法提高了最多2倍的性能。

关键词: SLAM, 三维高斯溅射, 定位, 建图, 机器人

Abstract: Dense simultaneous localization and mapping is a crucial technology in robotics.Recent research on 3D Gaussian splatting has demonstrated that high-quality scene reconstruction and real-time rendering can be achieved using multiple cameras in different poses.Against this backdrop,this paper introduces 3D Gaussian splatting into SLAM,representing the scene using 3D Gaussian primitives and implementing a dense visual SLAM algorithm using RGB-D cameras.This algorithm overcomes the limitations of previous radiance field-based representations,particularly in terms of fast rendering and optimization,the ability to recognize previously mapped regions,and structured map expansion by adding more Gaussians.Extensive experimental results demonstrate that the proposed dense RGB-D SLAM algorithm improves performance by up to 2 times compared to existing methods in terms of camera pose estimation,map construction,and new view synthesis.

Key words: SLAM, 3D Gaussian splatting, localization, mapping, robot

中图分类号: