测绘通报 ›› 2025, Vol. 0 ›› Issue (11): 118-123.doi: 10.13474/j.cnki.11-2246.2025.1118

• 学术研究 • 上一篇    下一篇

涉水桥梁水下防船撞钢套箱的空洞病害检测

刘成才1,2, 谢晓旺3, 胡健2, 张伊青3, 严靖4, 朱彦洁4   

  1. 1. 南京工业大学土木工程学院, 江苏 南京 211816;
    2. 江苏现代路桥有限责任公司, 江苏 南京 210000;
    3. 江苏现代工程检测有限公司, 江苏 南京 210000;
    4. 东南大学交通学院, 江苏 南京 211189
  • 收稿日期:2025-04-28 发布日期:2025-12-04
  • 通讯作者: 张伊青。E-mail:zhangyiqing@email.jchc.cn
  • 作者简介:刘成才(1978—),男,博士,正高级工程师,主要研究方向为桥梁养护和管理。E-mail:16754548@qq.com
  • 基金资助:
    国家自然科学基金(52108118)

Inspection of hole defects in underwater anti-ship steel boxed cofferdam of water crossing bridges

LIU Chengcai1,2, XIE Xiaowang3, HU Jian2, ZHANG Yiqing3, YAN Jing4, ZHU Yanjie4   

  1. 1. School of Civil Engineering, Nanjing Tech University, Nanjing 211816, China;
    2. Xiandai Road & Bridge Co., Ltd., Nanjing 210000, China;
    3. Jiangsu Xiandai Engineering Testing Co., Ltd., Nanjing 210000, China;
    4. School of Transportation, Southeast University, Nanjing 211189, China
  • Received:2025-04-28 Published:2025-12-04

摘要: 由于深水和浑水区的可达性较差,传统水下检测方法(如人工潜水和水下摄像)难以有效检测水下钢结构的腐蚀空洞缺陷。为推动桥梁水下检测技术的发展,本文基于三维声呐点云模型,提出了一种水下防船撞钢套箱腐蚀空洞损伤的自动化检测方法。首先通过融合点云第二近邻间距统计特征与Alpha Shape算法,构建一种自适应Alpha Shape点云边缘检测模型;然后采用多边形拆分法,从识别的边缘点云中分割出空洞单体;最后完成水下钢套箱结构腐蚀空洞的自动化识别与几何参数量化。本文方法通过水下测量试验的验证,方法的空洞面积评估精度均值达到76.2%,并成功应用于某长江大桥主墩的水下薄壁钢套箱检测,测得水下空洞损伤总面积为0.542 m2。本文研究为水下基础设施的数字化智能检测提供了新的技术路径与方法论参考。

关键词: 桥梁工程, 水下钢板腐蚀检测, 声呐点云, 点云边缘检测, 空洞分割

Abstract: Due to the poor accessibility in deep and turbid water environments,traditional underwater inspection methods (e.g.,manual diving and underwater photography) struggle to detect corrosion-induced hole defects in underwater steel structures.To advance the development of bridge underwater inspection technology,this study proposes an automated detection method for corrosion voids in underwater anti-collision steel cofferdams based on 3D sonar point cloud modeling.The proposed method integrates second-nearest-neighbor spacing statistical features with an Alpha Shape algorithm to construct an adaptive Alpha Shape-based edge detection model for point clouds.Subsequently,a polygon decomposition technique is applied to segment individual voids from the identified edge point clouds,thereby achieving automated recognition and geometric quantification of corrosion voids in underwater steel cofferdams.Experimental validation through underwater measurements demonstrates that the proposed method achieves an average accuracy of 76.2% in hole defect assessment.Furthermore,the method is successfully applied to inspect thin-walled steel plates on the main pier of a Yangtze River bridge,detecting a total void area of 0.542 m2.This research provides a novel technical framework and methodological reference for the digital and intelligent inspection of underwater infrastructure.

Key words: bridge engineering, underwater steel plate corrosion detection, sonar point cloud, point cloud edge detection, hole segmentation

中图分类号: