测绘通报 ›› 2025, Vol. 0 ›› Issue (11): 164-169.doi: 10.13474/j.cnki.11-2246.2025.1126

• 技术交流 • 上一篇    下一篇

基于复合神经网络GRNN-BP的高铁路基沉降区间预测

李德威1, 张胜1, 孙彤1, 贺全鹏2   

  1. 1. 沧州交通学院轨道交通学院, 河北 沧州 061100;
    2. 甘肃铁投地方铁路有限公司, 甘肃 兰州 730000
  • 收稿日期:2025-04-29 发布日期:2025-12-04
  • 通讯作者: 张胜。E-mail:2102990072@qq.com
  • 作者简介:李德威(1989—),男,硕士,讲师,研究方向为轨道交通智能控制。E-mail:15117084106@163.com
  • 基金资助:
    沧州市科技局重点研发计划(23244101008;23244101010)

Prediction of settlement interval of high-speed railway subgrade based on composite neural network GRNN-BP

LI Dewei1, ZHANG Sheng1, SUN Tong1, HE Quanpeng2   

  1. 1. School of Rail Transit, Cangzhou Jiaotong College, Cangzhou 061100, China;
    2. Gansu Tietou Local Railway Co., Ltd., Lanzhou 730000, China
  • Received:2025-04-29 Published:2025-12-04

摘要: 针对路基沉降数据样本匮乏导致预测精度低的问题,本文提出了一种联合PS-InSAR技术、生成对抗网络(GAN)数据扩充和GRNN-BP复合神经网络的高铁路基沉降区间预测模型。首先,利用PS-InSAR技术获取路基沉降值,分析环境因素与路基沉降间的相关性,构建原始样本集;然后,设立网络连接层连接两种网络,利用GRNN和BP神经网络两者的优势构成复合神经网络;最后,用GAN扩充数据集,并将扩充后的数据集输入GRNN-BP对高铁路基沉降量进行区间预测。试验结果表明:将扩充后的数据样本输入复合神经网络并对其进行训练能够有效提高模型的预测精度;GRNN-BP不仅能够提供高精度的点预测结果,还能构造清晰可靠的预测区间,相对于其他4种模型,具有更加可靠的高铁路基沉降预测结果。

关键词: PS-InSAR, GAN神经网络, 复合神经网络, 路基沉降, 区间预测

Abstract: To solve the problem of low prediction accuracy caused by lack of subgrade settlement data,a prediction model of settlement interval of high-speed railway subgrade combined with PS-InSAR technology,generative adversarial network(GAN) data expansion and GRNN-BP composite neural network is proposed.Firstly,PS-InSAR technology is used to obtain the settlement value of the subgrade,analyze the correlation between environmental factors and the settlement of the subgrade,and build the original sample set.Secondly,the network connection layer is set up to connect the two kinds of networks,and the advantages of GRNN and BP neural network are used to form a composite neural network.Finally,GAN is used to expand the data set,and the expanded data set is input into GRNN-BP to predict the settlement of high-speed railway subgrade.The experimental results show that the prediction accuracy of the model can be improved effectively by inputting the expanded data samples into the composite neural network and training it.GRNN-BP can not only provide high-precision point prediction results,but also construct clear and reliable prediction intervals.Compared with the other four models,GRNN-BP has more reliable prediction results for the settlement of high-speed railway subgrade.

Key words: PS-InSAR, generative adversarial network, composite neural network, subgrade settlement, interval prediction

中图分类号: