测绘通报 ›› 2025, Vol. 0 ›› Issue (10): 169-174.doi: 10.13474/j.cnki.11-2246.2025.1028

• 技术交流 • 上一篇    

基于先验query的分合流检测网络

宁宇光, 李质轩, 严德培, 吴铮, 张健   

  1. 高德软件公司, 北京 100102
  • 收稿日期:2025-06-27 发布日期:2025-10-31
  • 作者简介:宁宇光(1991-),男,硕士,工程师,主要研究方向为多模态、目标检测、分割和识别。E-mail:nyxlxxg2020@163.com

A prior query-based network for merging and diverging location detection

NING Yuguang, LI Zhixuan, YAN Depei, WU Zheng, ZHANG Jian   

  1. Amap Software Co., Ltd., Beijing 100102, China
  • Received:2025-06-27 Published:2025-10-31

摘要: 针对车道级地图中分合流位置形态多样、不易识别的问题,本文构建了一种基于先验query的分合流检测网络。首先,以车道线几何相交或有相交趋势为锚点召回候选分合流位置,并将其周围道路环境渲染成图片。其次,基于ResNet网络抽取多尺度图像特征,并通过注意力机制建立远程依赖。然后,设计先验query编码模块,提取候选分合流车道线先验位置信息。最后,改造解码器适配先验位置信息,设计二分类任务识别分合流位置。试验结果表明,模型在粗质版地图上有较强的抗噪能力,识别准确率达到了96.27%。本文提出的方法在分合流位置识别上有较高的准确性和稳健性。

关键词: 分合流位置检测, 先验位置, 多尺度, 注意力机制, 端到端

Abstract: To address the challenges of diverse and difficult-to-recognize merging and diverging locations in lane-level maps, this paper proposes a prior query-based detection network for merging and diverging locations.Firstly, candidate locations are recalled using geometric intersections of lane lines as anchors, and the surrounding lane information is rendered as images.Secondly, multi-scale image features are extracted using the ResNet network, and an encoder is employed to build long-range dependencies within the image features, thereby expanding the receptive field.Thirdly, a prior query encoding module is designed to extract the prior positional information of the candidate merging and diverging lane lines.Finally, the decoder is adapted to incorporate the prior positional information, and a binary classification task is designed to identify merging and diverging locations.Experimental results demonstrate that the proposed model exhibits strong noise robustness on maps with incomplete lane lines, achieving an identification accuracy of 96.27%.The proposed method demonstrates high accuracy and robustness in the identification of merging and diverging locations.

Key words: merging and diverging location detection, prior location, multi-scale, attention, end-to-end

中图分类号: