测绘通报 ›› 2025, Vol. 0 ›› Issue (10): 114-118,126.doi: 10.13474/j.cnki.11-2246.2025.1019

• 学术研究 • 上一篇    

Geo-Agent:支持自然语言交互的地理信息智能体架构

梁海磊1, 王勇1, 杜凯旋2, 周伟祥1   

  1. 1. 中国测绘科学研究院, 北京 100036;
    2. 西安测绘研究所, 陕西 西安 710054
  • 收稿日期:2025-03-17 发布日期:2025-10-31
  • 通讯作者: 王勇。E-mail:wangyong@casm.ac.cn
  • 作者简介:梁海磊(2001-),男,硕士生,主要研究方向为时空大数据。E-mail:lhl_chd@163.com
  • 基金资助:
    国家重点研发计划(2024YFC3015603);基本科研业务费(AR2515)

Geo-Agent: a framework for intelligent geographic information systems with natural language interaction

LIANG Hailei1, WANG Yong1, DU Kaixuan2, ZHOU Weixiang1   

  1. 1. Chinese Academy of Surveying and Mapping, Beijing 100036, China;
    2. Xi'an Research Institute of Surveying and Mapping, Xi'an 710054, China
  • Received:2025-03-17 Published:2025-10-31

摘要: 传统的地理信息系统(GIS)在人机交互过程中常面临操作流程烦琐、智能化程度有限等多重挑战。随着通用人工智能技术的快速发展,以生成式AI为核心的新引擎正推动地理信息行业从数字化向智能化加速演进,典型实践包括Autonomous GIS、MapGPT和LLM-Find等创新型研究。现有研究已证实了大语言模型(LLM)在GIS知识问答和地图制图等任务中存在巨大的潜力,但目前研究还存在以下局限:一方面模型缺乏地理信息数据自主理解并实现复杂空间任务分析的能力;另一方面高度依赖大模型自身的任务解析及代码生成能力。此外,API调用的模式可能引发隐私和敏感地理数据泄露风险。针对上述挑战,本文提出了基于开源架构的地理信息智能体架构Geo-Agent。该框架提出了基于空间思维链的任务多级指令解析与面向图结构的数据检索策略,有效地解决了地理语义理解偏差与空间逻辑断裂问题。经试验验证,Geo-Agent实现了对地理信息数据的理解、管理及深度分析,并且能通过自然语言交互完成复杂的空间分析任务,为实现全自主智能化的下一代地理信息系统提供了创新路径。

关键词: 代理智能体, 大语言模型, 地理信息系统, Geo-Agent

Abstract: Traditional geographic information systems (GIS)often encounter multiple challenges in the human-computer interaction process, such as cumbersome operation procedures and limited intelligence.With the rapid development of general artificial intelligence technology, new engines centered on generative AI are driving the geographic information industry to accelerate its evolution from digitalization to intelligence.Typical practices include innovative research such as Autonomous GIS, MapGPT, and LLM-Find.Existing studies have confirmed the huge potential of large language models (LLMs)in tasks such as GIS knowledge Q&A and map-making.However, current research still has the following limitations: on the one hand, the models lack the ability to autonomously understand geographic information data and perform complex spatial task analysis; on the other hand, they highly rely on the task parsing and code generation capabilities of the large models themselves.In addition, the API calling mode may lead to the risk of privacy and sensitive geographic data leakage.To address these challenges, this paper innovatively proposes a geographic information intelligent agent, Geo-Agent, based on an open-source architecture.This framework proposes a multi-level instruction parsing strategy based on spatial thinking chains and a data retrieval strategy oriented to graph structures, effectively solving the problems of geographic semantic understanding deviation and spatial logic disconnection.Experimental verification shows that Geo-Agent can understand, manage, and deeply analyze geographic information data, and can complete complex spatial analysis tasks through natural language interaction, providing an innovative path for realizing fully autonomous and intelligent next-generation geographic information systems.

Key words: intelligent agent, large language models, gartography, Geo-Agent

中图分类号: