测绘通报 ›› 2025, Vol. 0 ›› Issue (10): 133-137.doi: 10.13474/j.cnki.11-2246.2025.1022

• 技术交流 • 上一篇    

面向城市水文模拟的高分辨率遥感影像城市下垫面精细分类DUSC-7数据集的构建

张郁1,2, 胡鑫1,2, 吴辉1,2, 张卉冉1,2, 陈敏1,2   

  1. 1. 广州市城市规划勘测设计研究院有限公司, 广东 广州 510060;
    2. 广东省城市感知与监测预警 企业重点实验室, 广东 广州 510060
  • 收稿日期:2025-02-27 发布日期:2025-10-31
  • 通讯作者: 张卉冉。E-mail:756680419@qq.com
  • 作者简介:张郁(1987-),男,硕士,正高级工程师,主要从事计算机软件及应用、测绘工程与卫星导航定位技术的理论与方法研究。E-mail:1109571306@qq.com
  • 基金资助:
    广东省城市感知与监测预警企业重点实验室基金(2020B121202019)

Construction of high-resolution remote sensing imagery urban detailed underlying surface classification DUSC-7 dataset for urban hydrological simulation

ZHANG Yu1,2, HU Xin1,2, WU Hui1,2, ZHANG Huiran1,2, CHEN Min1,2   

  1. 1. Guangzhou Urban Planning & Design Survey Research Institute, Guangzhou 510060, China;
    2. Guangdong Enterprise Key Laboratory for Urban Sensing, Monitoring and Early arning, Guangzhou 510060, China
  • Received:2025-02-27 Published:2025-10-31

摘要: 基于光学遥感图像的城市下垫面要素识别与分类研究广受关注,但是目前公开的光学遥感图像下垫面分类数据集存在数据源精度不高、分类体系类别较少、缺乏标准规范等问题,难以满足用地用海分类与海绵城市建设的研究需求。为此,本文面向城市水文模拟对下垫面要素精细分类任务的研究需求,基于0.1m分辨率的航飞影像,构建了高分辨率遥感影像城市下垫面精细分类数据集(DUSC-7)。将图像中的下垫面要素裁剪出来,制作样本切片,参照第三次全国国土调查结果与地形图进行人工半自动标注,最终形成包含7个类别、8859个实例的城市下垫面要素分类数据集。按3∶7的比例将数据集中各类别图像随机划分为测试集和训练集,并展开验证试验。试验结果表明,在通用分类模型效果验证中,FCN、SegFormer-B1、hrformer、SETR等先进模型的最佳平均交并比(mIoU)不低于0.6488,本文构建的DUSC-7数据集能够满足城市下垫面要素分类算法的验证任务。

关键词: 下垫面, 分类, 遥感影像, 数据集, 海绵城市

Abstract: Research on the identification and classification of urban underlying surface elements based on optical remote sensing images has attracted significant attention.However, the currently available optical remote sensing image datasets for underlying surface classification suffer from issues such as low data source accuracy, limited classification categories, and lack of standardization.These problems make it difficult to meet the research needs for land and sea use classification and sponge city construction.To address this, this paper aims to meet the research needs for fine classification of underlying surface elements for urban hydrological simulation.We construct a high-resolution remote sensing image urban underlying surface fine classification dataset (DUSC-7)based on aerial images with a resolution of 0.1 meters.We extract the underlying surface elements from the images to create sample slices, and perform semi-automatic annotation with reference to the results of the third national land survey and topographic maps.This results in a classification dataset of urban underlying surface elements containing 7 categories and 8859 instances.The images for each category in the dataset are randomly divided into test and training sets in a 3∶7 ratio, and validation experiments are conducted.The experimental results show that, in the verification of the effectiveness of general classification models, the overall test accuracy of the current mIoU models achieve more than 0.648 8.The constructed DUSC-7 dataset can effectively meet the verification requirements for urban underlying surface element classification algorithms.

Key words: underlying surface, classification, remote sensing images, dataset, sponge city

中图分类号: