测绘通报 ›› 2019, Vol. 0 ›› Issue (7): 138-146.doi: 10.13474/j.cnki.11-2246.2019.0236
Previous Articles Next Articles
LI Xueping1,2, GONG Lu1,2
Received:
2018-07-23
Online:
2019-07-25
Published:
2019-07-31
CLC Number:
LI Xueping, GONG Lu. Correction and fitting of night light images of DMSP/OLS and VIIRS/DNB[J]. 测绘通报, 2019, 0(7): 138-146.
[1] 李小敏, 郑新奇, 袁涛. DMSP/OLS夜间灯光数据研究成果知识图谱分析[J]. 地球信息科学学报, 2018, 20(3):351-359. [2] ELVIDGE C D, ZISKIN D, BAUGH K E, et al. A fifteen year record of global natural gas flaring derived from satellite data[J]. Energies, 2009, 2(3):595-622. [3] WU Jiansheng, HE Shengbin, PENG Jian, et al. Interca-libration of DMSP-OLS night-time light data by the invariant region method[J]. International Journal of Remote Sensing, 2013, 34(20):7356-7368. [4] 邹进贵, 陈艳华, 田径, 等. 基于ArcGIS的DMSP/OLS夜间灯光影像校正模型的构建[J]. 测绘地理信息, 2014, 39(4):33-37. [5] 曹子阳, 吴志峰, 匡耀求, 等. DMSP/OLS夜间灯光影像中国区域的校正及应用[J]. 地球信息科学学报, 2015, 17(9):1092-1102. [6] 张梦琪, 何宗宜, 樊勇. DMSP/OLS稳定夜间灯光影像的校正方法[J]. 测绘通报, 2017(12):58-62,76. [7] LETU H, HARA M, TANA G, et al. A saturated light correction method for DMSP/OLS nighttime satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(2):389-396. [8] 卓莉, 张晓帆, 郑璟, 等. 基于EVI指数的DMSP/OLS夜间灯光数据去饱和方法[J].地理学报, 2015, 70(8):1339-1350. [9] 郑子豪, 陈颖彪, 吴志峰, 等. 单元路网长度的DMSP/OLS夜间灯光数据去饱和方法[J]. 遥感学报, 2018, 22(1):161-173. [10] ZHANG Qingling, SETO K C. Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data[J]. Remote Sensing of Environment, 2011, 115(9):2320-2329. [11] SHI Kaifang, YU Bailang, HUANG Yixiu, et al. Evaluating the ability of NPP-VⅡRS nighttime light data to estimate the gross domestic product and the electric power consumption of China at multiple scales:a comparison with DMSP-OLS data[J]. Remote Sensing, 2014, 6(2):1705-1724. [12] MA Ting, ZHOU Chenghu, TAO Pei, et al. Responses of Suomi-NPP VⅡRS-derived nighttime lights to socioeconomic activity in China's cities[J]. Remote Sensing Letters, 2014, 5(2):165-174. [13] 夏浪, 毛克彪, 孙知文, 等. 基于DNB验证的VⅡRS夜间云检测方法[J].国土资源遥感,2014,26(3):74-79. [14] 赵笑然, 石汉青, 杨平吕, 等. NPP卫星VⅡRS微光资料反演夜间PM_(2.5)质量浓度[J]. 遥感学报, 2017, 21(2):291-299. [15] 王鹤饶, 郑新奇, 袁涛. DMSP/OLS数据应用研究综述[J]. 地理科学进展, 2012, 31(1):11-18. [16] 郑辉, 曾燕, 王勇, 等. 基于VⅡRS夜间灯光数据的城市建筑密度估算——以南京主城区为例[J]. 科学技术与工程, 2014, 14(18):68-75. [17] 郝蕊芳, 于德永, 刘宇鹏, 等. DMSP/OLS灯光数据在城市化监测中的应用[J]. 北京师范大学学报(自然科学版), 2014, 50(4):407-413. [18] 许伟攀, 李郇, 陈浩辉. 基于城市夜间灯光数据的中美两国城市位序规模分布对比[J]. 地理科学进展, 2018, 37(3):385-396. [19] 钟洋, 胡碧松. 夜光数据的长江中游城市群空间格局演变[J]. 测绘科学, 2018,43(9):68-75. [20] 王琪, 袁涛, 郑新奇. 基于夜间灯光数据的中国省域GDP总量分析[J]. 城市发展研究, 2013, 20(7):44-48. [21] 徐康宁, 陈丰龙, 刘修岩. 中国经济增长的真实性:基于全球夜间灯光数据的检验[J]. 经济研究, 2015, 50(9):17-29,57. [22] 潘竟虎, 李俊峰. 基于夜间灯光影像的中国电力消耗量估算及时空动态[J]. 地理研究, 2016, 35(4):627-638. [23] CAO Xin, WANG Jian, CHEN Jin, et al. Spatialization of electricity consumption of China using saturation-corrected DMSP-OLS data[J]. International Journal of Applied Earth Observations and Geoinformation, 2014, 28(1):193-200. [24] 江威, 何国金, 刘慧婵,等. 利用DMSP/OLS夜间灯光影像模拟中国经济参量[J]. 遥感信息, 2018, 33(1):29-35. |
[1] | WANG Yanjun, LIN Yunhao, WANG Shuhan, LI Shaochun, WANG Mengjie. 3D road boundary extraction based on mobile laser scanning point clouds and OSM data [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 18-25. |
[2] | LIU Lin, SUN Yi, LI Wanwu. Detection model construction based on CNN for offshore drilling platform and training algorithm analysis [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 26-32,99. |
[3] | KONG Ruiyao, XIE Tao, MA Ming, KONG Ruilin. Application of CatBoost model in water depth inversion [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 33-37. |
[4] | WEN Yuxiao, Lü Jie, MA Qingxun, ZHANG Peng, XU Ruling. Study on inversion of forest biomass by LiDAR and hyperspectral [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 38-42. |
[5] | JIANG Zelin, DENG Jian, LUAN Haijun, LI Lanhui. Rapid extraction of COVID-19 information based on nighttime light remote sensing: a case study of Beijing [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 43-48. |
[6] | ZHENG Yan, HE Huan, BU Lijing, JIN Xin. Super-resolution reconstruction method based on self-similarity and edge-preserving decomposition [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 54-59. |
[7] | RAN Chongxian, LI Senlei. Tree canopy delineation using UAV multispectral imagery [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 112-117. |
[8] | LIU Li, DONG Xianmin, LIU Juan, WEN Xuehu. A new method of remote sensing interpretation production based on integration of human-machine and intelligence [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 118-123,137. |
[9] | AI Min, JING Hui, TIAN Yudong, GUO Lanqin, PEI Yuanjie. Analysis of land use and coverage change and driving force in Hulan district of Harbin city in recent 20 Years [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 124-128. |
[10] | LIU Yuxian, RUAN Minghao, YAN Zhen. A method for accurate extraction of gated electric towers based on airborne laser point cloud [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 129-133. |
[11] | LIU Guochao, PENG Weiping, YANG Shuihua, HU Zhouwen. Detection and application of urban road disease based on ground penetrating radar+3D measuring endoscope [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 134-137. |
[12] | LIU Xiaoyu, LIU Yang, DU Mingyi, ZHANG Min, JIA Jingjue, YANG Heng. Research on construction and demolition waste stacking point identification based on DeeplabV3+ [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 16-19,43. |
[13] | LI Jiahao, ZHOU Lü, MA Jun, YANG Fei, XIAN Lingxiao. Deformation monitoring and mechanism analysis of urban subway line based on PS-InSAR technology [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 20-25. |
[14] | SHI Yun, SHI Longlong, NIU Minjie, ZHAO Kan. Multi-task automatic identification of loess landslide based on one-stage instance segmentation network [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 26-31. |
[15] | DOU Shiqing, CHEN Zhiyu, XU Yong, ZHENG Hegang, MIAO Linlin, SONG Yingying. Hyperspectral image classification based on multi-feature fusion and dimensionality reduction algorithms [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 32-36,50. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||