[1] REDDY A S, REDDY M J. Evaluating the influence of spatial resolutions of DEM on watershed runoff and sediment yield using SWAT[J]. Journal of Earth System Science, 2015, 124(7):1517-1529. [2] 刘远, 周买春, 陈芷菁, 等. 基于不同DEM数据源的数字河网提取对比分析——以韩江流域为例[J]. 地理科学, 2012,32(9):1112-1118. [3] THOMAS I A, JORDAN P, MELLANDER P E, et al. Improving the identification of hydrologically sensitive areas using LiDAR DEMs for the delineation and mitigation of critical source areas of diffuse pollution[J]. Science of the Total Environment, 2016,556(1):276-290. [4] ZHANG P, LIU R, BAO Y, et al. Uncertainty of SWAT model at different DEM resolutions in a large mountainous watershed[J]. Water Research, 2014, 53(1):132-144. [5] 陶旸,汤国安,王春,等. DEM地形信息量计算的不确定性研究[J]. 地理科学, 2010,30(3):398-402. [6] WU S, LI J, HUANG G H. Characterization and evaluation of elevation data uncertainty in water resources modeling with GIS[J]. Water Resour Manage, 2008, 22(8):959-972. [7] 鲍伟佳,程先富,陈旭东. DEM水平分辨率对流域特征提取的影响分析[J]. 水土保持研究, 2011,18(2):129-132. [8] SULIMAN A H A, KATIMON A, DARUS I Z M, et al. Topmodel for streamflow simulation of a tropical catchment using different resolutions of ASTER DEM:optimization through response surface methodology[J]. Water Resources Management, 2016, 30(9):3159-3173. [9] WANG X Y, LIN Q. Effect of DEM mesh size on Ann-AGNPS simulation and slope correction[J]. Environ Monit Assess, 2011,179(1-4):267-277. [10] DIXON B E J. Resample or not effects of resolution of DEMs in watershed modeling[J]. Hydrol Process, 2009, 23(12):1714-1724. [11] 于海洋,卢小平,程钢,等. 基于LiDAR数据的流域水系网络提取方法研究[J]. 地理与地理信息科学, 2013,29(1):17-21. [12] 胡卓玮,李洋,王志恒.基于DEM的四川省低山丘陵区坡度提取不确定性分析[J].山地学报, 2012,30(5):636-640. [13] 于海洋,罗玲,马慧慧,等. SRTM(1″)DEM在流域水文分析中的适用性研究[J]. 国土资源遥感, 2017,29(2):138-143 [14] SINNATHAMBY S, DOUGLAS-MANKIN K R, CRAIGE C. Field-scale calibration of crop-yield parameters in the soil and water assessment tool (SWAT)[J]. Agricultural Water Management, 2017, 180(2):61-69. [15] 闫强,廖静娟,沈国状. 近40年乌兰乌拉湖变化的遥感分析与水文模型模拟[J]. 国土资源遥感, 2014,26(1):152-157. [16] GONG Jianya. Photogrammetry and deep learning[J]. Journal of Geodesy and Geoinformation Science, 2018, 1(1):1-15. |