[1] PANBOONYUEN T, JITKAJORNWANICH K, LAWAWI-ROJWONG S. Semantic segmentation on remotely sensed images using an enhanced global convolutional network with channel attention and domain specific transfer learning[J]. Remote Sensing, 2019, 11(1):83. [2] ALSHEHHI R, MARPU P R, WOON W L, et al. Simultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130(8):139-149. [3] MARMANIS D, SCHINDLER K, WEGNER J D, et al. Classification with an edge:improving semantic image segmentation with boundary detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 135(1):158-172. [4] AUDEBERT N, LE SAUX B, LEFÈVRE S, et al. Beyond RGB:very high resolution urban remote sensing with multimodal deep networks[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 140(1):20-32. [5] MARCOS D, VOLPI M, KELLENBERGER B, et al. Land cover mapping at very high resolution with rotation equivariant CNNs:towards small yet accurate models[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 145(2):96-107. [6] MAGGIORI E, TARABALKA Y, CHARPIAT G, et al. High-resolution aerial image labeling with convolutional neural networks[J]. IEEE Transactions on Geoscience & Remote Sensing, 2017, 55(12):7092-7103. [7] 张新明, 祝晓斌, 蔡强, 等. 图像语义分割深度学习模型综述[J]. 高技术通讯, 2017, 27(S1):808-815. [8] HU F, XIA G S, HU J,et al. Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery[J]. Remote Sensing, 2015, 7(11):14680-14707. [9] CASTELLUCCIO M, POGGI G, SANSONE C, et al. Land use classification in remote sensing images by convolutional neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston:IEEE, 2015. [10] BECK R A. Remote sensing and GIS as counterterrorism tools in the Afghanistan war:a case study of the Zhawar Kili region[J]. The Professional Geographer, 2003, 55(2):170-179. [11] LONG J, SHELHAMER E, DARRELL T. Fully convolu-tional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2014, 39(4):640-651. [12] BADRINARAYANAN V, KENDALL A, Cipolla R. SegNet:a deep convolutional encoder-decoder architecture for scene segmentation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(12):2481-2495. [13] RONNEBERGER O, FISCHER P, BROX T. U-Net:convolutional networks for biomedical image segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston:IEEE, 2015. [14] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[J]. Computer Science, 2014(4):357-361. [15] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab:semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2018, 40(4):834-848. [16] ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hawaii:IEEE, 2017. [17] PENG C, ZHANG X, YU G, et al. Large kernel matters-improve semantic segmentation by global convolutional network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hawaii:IEEE, 2017. [18] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hawaii:IEEE, 2017. [19] 吴止锾, 高永明, 李磊, 等. 类别非均衡遥感图像语义分割的全卷积网络方法[J]. 光学学报, 2019, 39(4):401-412. [20] 陈天华, 郑司群, 于峻川. 采用改进DeepLab网络的遥感图像分割[J]. 测控技术, 2018, 37(11):34-39. [21] 苏健民, 杨岚心, 景维鹏. 基于U-Net的高分辨率遥感图像语义分割方法[J]. 计算机工程与应用, 2019, 55(7):207-213. [22] LIU Y, REN Q, GENG J, et al. Efficient patch-wise semantic segmentation for large-scale remote sensing images[J]. Sensors, 2018, 18(10):3232. [23] CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City:IEEE, 2018. [24] CHOLLET F. Xception:deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hawaii:IEEE, 2017. [25] XIE C W, ZHOU H Y, WU J, et al. Vortex Pooling:improving context representation in semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City:IEEE, 2018. [26] GARCIA-GARCIA A, ORTS-ESCOLANO S, OPREA S, et al. A review on deep learning techniques applied to semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hawaii:IEEE, 2017. [27] ZHANG H, DANA K, SHI J, et al. Context encoding for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City:IEEE, 2018. [28] 刘懿兰, 黄晓霞, 李红旮, 等.基于卷积神经网络与条件随机场方法提取乡镇非正规固体废弃物[J]. 地球信息科学学报, 2019, 21(2):259-268. |