[1] SNAVELY N,SEITZ S M,SZELISKI R. Photo tourism: exploring photo collections in 3D[J]. ACM Transactions on Graphics,2006,25(3): 835-846. [2] FURUKAWA Y,PONCE J. Carved visual hulls for image-based modeling[J]. International Journal of Computer Vision,2009,81(1): 53-67. [3] HAN Jungong,SHAO Ling,XU Dong,et al. Enhanced computer vision with Microsoft Kinect sensor: a review[J]. IEEE Transactions on Cybernetics,2013,43(5): 1318-1334. [4] POLLEFEYS M,NISTÉR D,FRAHM J M,et al. Detailed real-time urban 3D reconstruction from video[J]. International Journal of Computer Vision,2008,78(2/3): 143-167. [5] 张奇,徐斌,张冬,等. 倾斜摄影测量三维重建在城市规划管理中的应用[J]. 智能城市,2021,7(4):12-14. [6] 李安福,曾政祥,吴晓明.浅析国内倾斜摄影技术的发展[J].测绘与空间地理信息,2014,37(9): 57-59. [7] 航迹软件DroneDeploy[EB/OL].[2021-09-10].https://www.dronedeploy.com/. [8] NESBIT P,HUGENHOLTZ C. Enhancing UAV–SfM 3D model accuracy in high-relief landscapes by incorporating oblique images[J]. Remote Sensing,2019,11(3): 239. [9] SCOTT W R,ROTH G,RIVEST J F. View planning for automated three-dimensional object reconstruction and inspection[J]. ACM Computing Surveys,2003,35(1): 64-96. [10] CONNOLLY C. The determination of next best views[C]//Proceedings of 1985 IEEE International Conference on Robotics and Automation.Louis,MO:IEEE,1985: 432-435. [11] 航迹软件DJI GO PRO[EB/OL].[2021-09-10]. https://www.dji.com/cn/ground-station-pro. [12] 吴宇豪,安籽鹏. 面向图像三维重建的无人机航线规划[J]. 电子技术应用,2019,45(3): 76-79. [13] 盛辉,李凌昊,刘树生,等. 面向城市复杂区域的无人机倾斜摄影航线规划方法[J]. 测绘通报,2021(1):47-52. [14] 张磊,朱励轩,张滕远,等. 适用于城市区域航拍的无人机航线规划研究[J]. 公路交通科技(应用技术版),2018,14(2): 296-299. [15] JING Wei,POLDEN J,TAO P Y,et al. View planning for 3D shape reconstruction of buildings with unmanned aerial vehicles[C]//Proceedings of the 14th International Conference on Control,Automation,Robotics and Vision(ICARCV).Phuket:IEEE,2016:1-6. [16] HEPP B,NIEßNER M,HILLIGES O. Plan3D: viewpoint and trajectory optimization for aerial multi-view stereo reconstruction[J]. ACM Transactions on Graphics,2017,38(1):1-17. [17] YANG C H,TSAI M H,KANG S C,et al. UAV path planning method for digital terrain model reconstruction-a debris fan example[J]. Automation in Construction,2018,93: 214-230. [18] SAKANE S,NIEPOLD R,SATO T,et al. Illumination setup planning for a hand-eye system based on an environmental model[J]. Advanced Robotics,1991,6(4): 461-482. [19] 王晓东,岳军红,陈兴芳. 倾斜摄影技术的单体塔式建筑物三维重建方法[J]. 全球定位系统,2021,46(2): 86-92. [20] 周骁腾,周政,张书航,等. 面向单体建筑精细化建模的无人机三维航线规划[J]. 地矿测绘,2017,33(2): 24-27. [21] SCHMID K,HIRSCHMVLLER H,DÖMEL A,et al. View planning for multi-view stereo 3D reconstruction using an autonomous multicopter[J]. Journal of Intelligent & Robotic Systems,2012,65(1-4): 309-323. [22] YAN Feihu,XIA Enyong,LI Zhaoxin,et al. Sampling-based path planning for high-quality aerial 3D reconstruction of urban scenes[J]. Remote Sensing,2021,13(5): 989. [23] ZHOU Xiaohui,XIE Ke,HUANG Kai,et al. Offsite aerial path planning for efficient urban scene reconstruction[J]. ACM Transactions on Graphics,2020,39(6): 1-16. [24] COWAN C K,KOVESI P D. Automatic sensor placement from vision task requirements[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1988,10(3): 407-416. [25] CHEN S Y,LI Y F. Automatic sensor placement for model-based robot vision[J]. IEEE Transactions on Systems,Man,and Cybernetics,Part B (Cybernetics),2004,34(1): 393-408. [26] FLOOD M M. The traveling-salesman problem[J]. Operations Research,1956,4(1): 61-75. [27] HARDOUIN G,MORAS J,MORBIDI F,et al. Next-Best-View planning for surface reconstruction of large-scale 3D environments with multiple UAVs[C]//Proceedings of 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS).Las Vegas:IEEE,2021:1567-1574. [28] ZHENG Xiaocui,WANG Fei,LI Zhanghua. A multi-UAV cooperative route planning methodology for 3D fine-resolution building model reconstruction[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2018,146: 483-494. [29] YAMAUCHI B. A frontier-based approach for autonomous exploration[C]//Proceedings of 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation.Monterey,CA:IEEE,1997: 146-151. [30] BIRCHER A,KAMEL M,ALEXIS K,et al. Receding horizon“next-best-view” planner for 3D exploration[C]//Proceedings of 2016 IEEE International Conference on Robotics and Automation. Stockholm:IEEE,2016: 1462-1468. [31] LAVALLE S M. Rapidly-exploring random trees: a new tool for path planning[J]. Department of Computer Science,1998,1:1-4. [32] DAI Anna,PAPATHEODOROU S,FUNK N,et al. Fast frontier-based information-driven autonomous exploration with an MAV[C]//Proceedings of 2020 IEEE International Conference on Robotics and Automation. Paris:IEEE,2020: 9570-9576. [33] SELIN M,TIGER M,DUBERG D,et al. Efficient autonomous exploration planning of large-scale 3D environments[J]. IEEE Robotics and Automation Letters,2019,4(2): 1699-1706. [34] HEPP B,DEY D,SINHA S N,et al. Learn-to-score: efficient 3D scene exploration by predicting view utility[C]//Proceedings of 2018 Computer Vision.Cham: Springer,2018. [35] 李爱军. 基于卷积神经网络和NBV的三维重建方法[J]. 电子测量技术,2021,44(8): 70-75. [36] LI Haoran,ZHANG Qichao,ZHAO Dongbin. Deep reinforcement learning-based automatic exploration for navigation in unknown environment[J]. IEEE Transactions on Neural Networks and Learning Systems,2020,31(6): 2064-2076. |