Bulletin of Surveying and Mapping ›› 2022, Vol. 0 ›› Issue (10): 28-36.doi: 10.13474/j.cnki.11-2246.2022.0290
Previous Articles Next Articles
HUANG Zihang, JIANG Bingchuan, WANG Ziquan
Received:
2022-06-16
Revised:
2022-09-13
Published:
2022-11-02
CLC Number:
HUANG Zihang, JIANG Bingchuan, WANG Ziquan. A remote sensing image object knowledge association method based on geographic knowledge[J]. Bulletin of Surveying and Mapping, 2022, 0(10): 28-36.
[1] 刘扬,付征叶,郑逢斌.高分辨率遥感影像目标分类与识别研究进展[J].地球信息科学学报, 2015, 17(9):1080-1091. [2] HELBER P, BISCHKE B, DENGEL A, et al. EuroSAT:a novel dataset and deep learning benchmark for land use and land cover classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(7):2217-2226. [3] ZHOU Weixun, NEWSAM S, LI Congmin, et al. PatternNet:a benchmark dataset for performance evaluation of remote sensing image retrieval[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 145:197-209. [4] SUMBUL G, CHARFUELAN M, DEMIR B, et al. BigEarthNet:a large-scale benchmark archive for remote sensing image understanding[EB/OL].[2022-05-16].https://arxiv.org/abs/1902.06148 [5] 王金传,谭喜成,王召海,等.基于Faster R-CNN深度网络的遥感影像目标识别方法研究[J].地球信息科学学报, 2018, 20(10):1500-1508. [6] 邓志鹏,孙浩,雷琳,等.基于多尺度形变特征卷积网络的高分辨率遥感影像目标检测[J].测绘学报, 2018, 47(9):1216-1227. [7] 李林科.基于深度学习的视觉内容描述技术研究[D].成都:电子科技大学, 2018. [8] 戴玉超,张静, PORIKLI,等.深度残差网络的多光谱遥感图像显著目标检测[J].测绘学报, 2018, 47(6):873-881. [9] 陈丁,万刚,李科.多层特征与上下文信息相结合的光学遥感影像目标检测[J].测绘学报, 2019, 48(10):1275-1284. [10] 徐俊峰,张保明,余东行,等.多特征融合的高分辨率遥感影像飞机目标变化检测[J].遥感学报, 2020, 24(1):37-52. [11] 李胜.联合领域知识和深度学习的城市地表覆盖变化检测方法[D].武汉:武汉大学, 2018. [12] 闫鹏飞.知识约束的高空间分辨率遥感影像分割方法研究[D].北京:中国地质大学(北京), 2018. [13] 顾海燕.遥感影像地理本体建模驱动的对象分类技术[D].武汉:武汉大学, 2015. [14] 张建廷,张立民,徐涛.语义网络引导的遥感图像分类[J].遥感信息, 2016, 31(1):38-42. [15] 柴宏磊.基于知识的遥感图像港口目标识别[D].成都:电子科技大学, 2015. [16] MANDAL D P, MURTHY C A, PAL S K. Analysis of IRS imagery for detecting man-made objects with a multivalued recognition system[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans, 1996, 26(2):241-247. [17] HAVERKAMP D S. Extracting straight road structure in urban environments using IKONOS satellite imagery[J].Optical Engineering,2022,41(9):1496785. [18] 骆剑承,周成虎,沈占锋,等.遥感信息图谱计算的理论方法研究[J].地球信息科学学报, 2009, 11(5):5664-5669. [19] 骆剑承,吴田军,夏列钢.遥感图谱认知理论与计算[J].地球信息科学学报, 2016, 18(5):578-589. [20] 夏列钢,骆剑承,王卫红,等.遥感信息图谱支持的土地覆盖自动分类[J].遥感学报, 2014, 18(4):788-803. [21] 谢榕,罗知微,王雨晨,等.遥感卫星特定领域大规模知识图谱构建关键技术[J].无线电工程, 2017, 47(4):1-6. [22] 骆剑承,吴田军,吴志峰,等.地理图斑智能计算及模式挖掘方法研究[J].地球信息科学学报, 2020, 22(1):57-75. [23] SOWA J F. Principles of semantic networks-explorations in the representation of knowledge[J]. Knowledge Organization, 1993, 20(1):60-61. [24] 中国中文信息学会,语言与知识计算专委会.知识图谱发展报告[R],北京:2018. [25] 蒋秉川,万刚,许剑,等.多源异构数据的大规模地理知识图谱构建[J].测绘学报, 2018, 47(8):1051-1061. |
[1] | LIU Ji, YANG Jun. A lightweight dense connection network for object detection of remote sensing images [J]. Bulletin of Surveying and Mapping, 2022, 0(10): 37-43,55. |
[2] | ZHAO Kan, SHI Yun, NIU Minjie, WANG Huqin. Prediction of PM2.5 concentration based on optimized BP neural network with improved sparrow search algorithm [J]. Bulletin of Surveying and Mapping, 2022, 0(10): 44-48,104. |
[3] | CHAI Hongzhou, DU Zhenqiang, Xiang Minzhi, Huang Ziru. The research status and development trend of UUVs cooperative localization technology [J]. Bulletin of Surveying and Mapping, 2022, 0(10): 62-67,92. |
[4] | HE Xishan, ZHOU Ping, CHEN Gang. A StaMPS PSI time series analysis method combined with GACOS and linear atmospheric correction [J]. Bulletin of Surveying and Mapping, 2022, 0(10): 105-109,128. |
[5] | BI Jixin, LIU Qiang, WU Wenchao, ZHAN Xiaoming. Detection of underwater block stone in Qiantang River revetment engineering based on unmanned ship measurement system [J]. Bulletin of Surveying and Mapping, 2022, 0(10): 118-123. |
[6] | MIN Xing, HUANG Pinwen, TAN Jinxiang. Risk source identification in metro protection area based on convolutional neural network [J]. Bulletin of Surveying and Mapping, 2022, 0(10): 162-165,170. |
[7] | CHENG Mingyu, WU Yousi. Acquisition and application of building entity for modernization of governance capability [J]. Bulletin of Surveying and Mapping, 2022, 0(10): 166-170. |
[8] | WANG Yanjun, LIN Yunhao, WANG Shuhan, LI Shaochun, WANG Mengjie. 3D road boundary extraction based on mobile laser scanning point clouds and OSM data [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 18-25. |
[9] | LIU Lin, SUN Yi, LI Wanwu. Detection model construction based on CNN for offshore drilling platform and training algorithm analysis [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 26-32,99. |
[10] | KONG Ruiyao, XIE Tao, MA Ming, KONG Ruilin. Application of CatBoost model in water depth inversion [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 33-37. |
[11] | WEN Yuxiao, Lü Jie, MA Qingxun, ZHANG Peng, XU Ruling. Study on inversion of forest biomass by LiDAR and hyperspectral [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 38-42. |
[12] | JIANG Zelin, DENG Jian, LUAN Haijun, LI Lanhui. Rapid extraction of COVID-19 information based on nighttime light remote sensing: a case study of Beijing [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 43-48. |
[13] | ZHENG Yan, HE Huan, BU Lijing, JIN Xin. Super-resolution reconstruction method based on self-similarity and edge-preserving decomposition [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 54-59. |
[14] | RAN Chongxian, LI Senlei. Tree canopy delineation using UAV multispectral imagery [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 112-117. |
[15] | LIU Li, DONG Xianmin, LIU Juan, WEN Xuehu. A new method of remote sensing interpretation production based on integration of human-machine and intelligence [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 118-123,137. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||