[1] 陈兰兰,夏益强,肖海平,等. 露天矿边坡稳定性监测方法研究现状及进展[J]. 测绘通报,2022(5):7-13. [2] 袁成海,桑运龙,杨流家. 基于亚像素圆心检测法的边坡变形监测预警系统[J]. 公路交通科技,2011,28(12):50-56. [3] ZHAO S,KANG F,LI J. Displacement monitoring for slope stability evaluation based on binocular vision systems[J]. Optik,2018,171:658-671. [4] 焦泽珍,李静涛,焦步青. 基于智能全站仪的矿区边坡监测三维可视化方法[J]. 露天采矿技术,2015,30(10):12-14. [5] 刘超,高井祥,王坚,等. GPS/伪卫星技术在露天矿边坡监测中的应用[J]. 煤炭学报,2010,35(5):755-759. [6] 何小钰,闫昕,郭毅霖,等. 基于北斗卫星的公路边坡实时监测系统设计与实现[J]. 公路交通科技(应用技术版),2013(6):53-55. [7] 司梦元,周银,郭杰明,等. 基于三维激光扫描技术的高边坡变形监测分析[J]. 科学技术与工程,2020,20(19):7922-7927. [8] PARWATA I N S,NAKASHIMA S,SHIMIZU N,et al. Effect of digital elevation models on monitoring slope displacements in open-pit mine by differential interferometry synthetic aperture radar[J]. Journal of Rock Mechanics and Geotechnical Engineering,2020,12(5):1001-1013. [9] 万忠明,王亚文,范子义. 无人机倾斜摄影技术在边坡监测中的应用[J]. 测绘通报,2022(6):170-172. [10] ZHAO S,KANG F,LI J,et al. Structural health monitoring and inspection of dams based on UAV photogrammetry with image 3D reconstruction[J]. Automation in Construction,2021,130:103832. [11] 杨超,杨鹏,吕文生,等. 基于无人机摄影测量的尾矿坝边坡表面变形监测[J]. 中国安全生产科学技术,2021,17(5):5-11. [12] 贺鹏,刘奇,王通,等. 基于无人机倾斜摄影技术的铁路边坡危岩落石运动特性分析[J]. 铁道标准设计,2021,65(12):1-7. [13] 靳远成,赵鹏辉,薄雾,等. 基于无人机影像的边坡精细化建模及稳定性分析[J]. 水利与建筑工程学报,2020,18(6):178-183. [14] YASUTAKA F,JEAN P. Accurate,dense,and robust multiview stereopsis[C]//Proceedings of 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis:IEEE,2010. [15] CHARLES Q R,SU Hao,MO Kaichun,et al. PointNet:deep learning on point sets for 3D classification and segmentation[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu:IEEE,2017. [16] CARVALHO L E,VON WANGENHEIM A. 3D object recognition and classification:a systematic literature review[J]. Pattern Analysis and Applications,2019,22:1243-1292. [17] BESL P J,MCKAY N D. A method for registration of 3D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(3):239-256. [18] QI C R,YI Li,SU Hao,et al. PointNet++:deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.[S.l.]:NIPS,2017. |