[1] 殷跃平. 汶川八级地震地质灾害研究[J]. 工程地质学报, 2008, 16(4): 433-444. [2] 王欣, 方成勇, 唐小川, 等. 泸定MS 6.8地震诱发滑坡应急评价研究[J]. 武汉大学学报(信息科学版), 2023, 48(1): 25-35. [3] MERGHADI A, YUNUS A P, DOU Jie, et al. Machine learning methods for landslide susceptibility studies: a comparative overview of algorithm performance[J]. Earth-Science Reviews, 2020, 207: 103225. [4] 王赫生, 伍剑波, 张泰丽, 等. 基于SHALSTAB模型的地质灾害易发性动态评价[J]. 华东地质, 2020, 41(1): 88-95. [5] 许冲, 戴福初, 姚鑫, 等. GIS支持下基于层次分析法的汶川地震区滑坡易发性评价[J]. 岩石力学与工程学报, 2009, 28(S2): 3978-3985. [6] INTARAWICHIAN N, DASANANDA S. Frequency ratio model based landslide susceptibility mapping in lower Mae Chaem watershed, Northern Thailand[J]. Environmental Earth Sciences, 2011, 64(8): 2271-2285. [7] LUO Xiangang, LIN Feikai, ZHU Shuang, et al. Mine landslide susceptibility assessment using IVM, ANN and SVM models considering the contribution of affecting factors[J]. PLoS One, 2019, 14(4): e0215134. [8] SHAHABI H, HASHIM M, BIN AHMAD B. Remote sensing and GIS-based landslide susceptibility mapping using frequency ratio, logistic regression, and fuzzy logic methods at the central Zab Basin, Iran[J]. Environmental Earth Sciences, 2015, 73(12): 8647-8668. [9] SU Cheng, WANG Lili, WANG Xizhi, et al. Mapping of rainfall-induced landslide susceptibility in Wencheng, China, using support vector machine[J]. Natural Hazards, 2015, 76(3): 1759-1779. [10] 黄龙, 孙倩, 胡俊. 基于InSAR与随机森林的滑坡敏感性评价与误差改正[J]. 测绘通报, 2022(10): 13-20. [11] THI NGO P T, PANAHI M, KHOSRAVI K, et al. Evaluation of deep learning algorithms for national scale landslide susceptibility mapping of Iran[J]. Geoscience Frontiers, 2021, 12(2): 505-519. [12] 蒋万钰, 陈冠, 孟兴民, 等. 基于卷积神经网络模型的区域滑坡敏感性评价: 以川藏铁路沿线为例[J]. 兰州大学学报(自然科学版), 2022, 58(2): 203-211. [13] 梁柱. 机器学习在浅层滑坡敏感性评价中的综合应用与研究[D]. 长春:吉林大学, 2021. [14] 尹祖钰. 基于主成分分析和递归特征消除的支持向量机分类方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. [15] YI Yaning, ZHANG Zhijie, ZHANG Wanchang, et al. Landslide susceptibility mapping using multiscale sampling strategy and convolutional neural network: a case study in Jiuzhaigou region[J]. CATENA, 2020, 195: 104851. [16] 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251. [17] 张顺, 龚怡宏, 王进军. 深度卷积神经网络的发展及其在计算机视觉领域的应用[J]. 计算机学报, 2019, 42(3): 453-482. [18] 张立石, 梁得亮, 刘桦, 等. 基于小波变换与逻辑斯蒂回归的混合式配电变压器故障辨识[J]. 电工技术学报, 2021, 36(S2): 467-476. [19] 张雪芹. 改进粒子群算法优化支持向量机的软件缺陷预测模型[D].湖州: 湖州师范学院, 2022. [20] 许冲, 王世元, 徐锡伟, 等. 2017年8月8日四川省九寨沟MS7.0地震触发滑坡全景[J]. 地震地质, 2018, 40(1): 232-260. [21] 刘甲美, 王涛, 石菊松, 等. 四川九寨沟MS7.0级地震滑坡应急快速评估[J]. 地质力学学报, 2017, 23(5): 639-645. [22] YI Yaning, ZHANG Zhijie, ZHANG Wanchang,et al.GIS-based earthquake-triggered-landslide susceptibility mapping with an integrated weighted index model in Jiuzhaigou region of Sichuan Province,China[J].Natural Hazards and Earth System Sciences,2019,19(9):1973-1988. |