[1] 嵇晓燕,刘廷良,孙宗光,等.国家水环境质量监测网络发展历程与展望[J].环境监测管理与技术,2014,26(6):1-4. [2] 嵇晓燕,杨凯,李文攀,等.国家地表水环境质量评价、分析与表征系统初步构建[J].中国环境监测,2022,38(5):38-46. [3] 赵尚玉,郑小慎,叶洽.滨海新区地表水水质评价与污染源分析[J].中国环境监测,2023,39(2):107-116. [4] 杜展鹏,王明净,严长安,等.基于绝对主成分-多元线性回归的滇池污染源解析[J].环境科学学报,2020,40(3):1130-1137. [5] 吴家祺.Kafka在水情遥测采集系统应用[C]//中国水力发电工程学会自动化专委会换届大会暨2023年全国水电厂智能化应用学术交流会论文集.南京:[s.n.],2023:276-278. [6] LANDAU D,ANDRADE X,BARBOSA J G.Kafka consumer group autoscaler[EB/OL].[2023-12-20].2022:arXiv:2206.11170.http://arxiv.org/abs/2206.11170. [7] UTA A,GHIT B,DAVE A,et al.Demo]low-latency spark queries on updatable data[C]//Proceedings of 2019 International Conference on Management of Data.Amsterdam Netherlands:ACM,2019:2009-2012. [8] HU Jianping,WANG Yongyi,SHI Fan,et al.Compared analysis of row-based storage and column-based storage[C]//Proceedings of 2018 International Conference on Instrumentation & Measurement,Computer,Communication and Control.Harbin:IEEE,2018:168-173. [9] ARMBRUST M,XIN R S,LIAN Cheng,et al.Spark SQL:relational data processing in spark[C]//Proceedings of 2015 ACM SIGMOD International Conference on Management of Data.Melbourne Victoria Australia.[S.l.]:ACM Press,2015:1383-1394. [10] IVANOV T,TAAFFE J.Exploratory analysis of spark structured streaming[C]//Proceedings of Companion of 2018 ACM/SPEC International Conference on Performance Engineering.Berlin Germany.[S.l.]:ACM Press,2018:141-146. [11] BILGIN A.Evaluation of surface water quality by using Canadian Council of Ministers of the Environment Water Quality Index (CCME WQI) method and discriminant analysis method:a case study Coruh River Basin[J].Environmental Monitoring and Assessment,2018,190(9):554. [12] 国家环境保护总局,国家质量监督检验检疫总局.地表水环境质量标准:GB 3838—2002[S].北京:中国环境科学出版社,2002. [13] WU Han.Research proposal:reliability evaluation of the apache Kafka streaming system[C]//Proceedings of 2019 IEEE International Symposium on Software Reliability Engineering Workshops.Berlin:IEEE,2019:112-113. [14] 罗希意,霍晓阳,傅洛伊.基于窗口函数和分布式集群的可视化学术搜索系统数据查询优化[J].上海交通大学学报,2019,53(8):978-982. [15] 李圣洁.异龙湖水质时空演化特征及其改善模拟研究[D].重庆:重庆交通大学,2023. |