[1] 吴骅跃,赵祥模.基于IPM和边缘图像过滤的多干扰车道线检测[J].中国公路学报,2020,33(5):153-164. [2] 刘志强,仲晶晶,汪澎,等.不确定背景环境下车道检测技术的研究[J].中国安全科学学报,2009,19(12):159-164. [3] 陈卫卫,王卫星,闫迪.基于分数阶微分和Frangi的夜间车道线检测[J].四川大学学报(自然科学版),2021,58(2):49-59. [4] LIU Y T,BAI T X,TIAN Y L,et al.SegDQ:segmentation assisted multi-object tracking with dynamic query-based transformers[J].Neurocomputing,2022,481:91-101. [5] ZHAO H S,SHI J P,QI X J,et al.Pyramid scene parsing network[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu:IEEE,2017:6230-6239. [6] CHEN L C,ZHU Y K,PAPANDREOU G,et al.Encoder-decoder with atrous separable convolution for semantic image segmentation[M]//Lecture Notes in Computer Science.Cham:Springer International Publishing,2018:833-851. [7] HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE,2016:770-778. [8] YU C Q,WANG J B,PENG C,et al.BiSeNet:bilateral segmentation network for real-time semantic segmentation[M]//Lecture Notes in Computer Science.Cham:Springer International Publishing,2018:334-349. [9] YU C Q,GAO C X,WANG J B,et al.BiSeNet V2:bilateral network with guided aggregation for real-time semantic segmentation[J].International Journal of Computer Vision,2021,129(11):3051-3068. [10] PAN X G,SHI J P,LUO P,et al.Spatial as deep:spatial CNN for traffic scene understanding[C]//Proceedings of 2018 AAAI Conference on Artificial Intelligence.New Orleans:AAAI Press,2018. [11] BEHRENDT K,SOUSSAN R.Unsupervised labeled lane markers using maps[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW).Seoul:IEEE,2019:832-839. [12] LIU R J,YUAN Z J,LIU T,et al.End-to-end lane shape prediction with transformers[C]//Proceedings of 2021 IEEE Winter Conference on Applications of Computer Vision.Waikoloa:IEEE,2021:3693-3701. [13] 崔文靓,王玉静,康守强,等.基于改进YOLOv3算法的公路车道线检测方法[J].自动化学报,2022,48(6):1560-1568. [14] WANG J G,SHEN T Y,TIAN Y L,et al.A parallel teacher for synthetic-to-real domain adaptation of traffic object detection[J].IEEE Transactions on Intelligent Vehicles,2022,7(3):441-455. [15] ZHANG W W,WANG K F,WANG Y T,et al.A loss-balanced multi-task model for simultaneous detection and segmentation[J].Neurocomputing,2021,428:65-78. |