测绘通报 ›› 2016, Vol. 0 ›› Issue (9): 56-59.doi: 10.13474/j.cnki.11-2246.2016.0292

• 技术交流 • 上一篇    下一篇

利用Landsat时序NDVI数据进行新疆石河子垦区灌溉作物分类

汪松1, 王斌1, 刘长征2, 王思远3   

  1. 1. 北京交通大学, 北京 100044;
    2. 石河子大学, 新疆 石河子 832003;
    3. 中国科学院遥感与数字地球研究所, 北京 100094
  • 收稿日期:2015-12-22 出版日期:2016-09-25 发布日期:2016-09-28
  • 作者简介:汪松(1990-),男,硕士生,主要研究方向为遥感理论与应用。E-mail:13121160@bjtu.edu.cn
  • 基金资助:

    兵团科技攻关与成果转化计划(2015AD108)

Research on Identification of Irrigated Crop Types in Shihezi Reclamation Area Using Time-series Landsat NDVI

WANG Song1, WANG Bin1, LIU Changzheng2, WANG Siyuan3   

  • Received:2015-12-22 Online:2016-09-25 Published:2016-09-28

摘要:

精确的农作物分类信息对于农业环境评估、水资源利用规划非常重要,尤其是在干旱、半干旱地区。本文利用30 m分辨率的Landsat NDVI时间序列数据进行了新疆石河子垦区混合农作物精确区分的潜力研究。首先利用S-G滤波重构了Landsat NDVI时间序列,然后基于SVM模型对研究区域农业类型进行了精确分类。在SVM分类模型作用下,S-G重构后的时间序列有效地将该地区棉花、玉米、小麦等主要作物区分开来,精度高于0.86,Kappa系数大于0.82。结果表明,S-G滤波能够有效提高NDVI时间序列数据质量;TM影像时间序列在监测干旱、半干旱地区的作物类型和种植方式随时间的变化方面存在巨大潜力。

关键词: NDVI, S-G滤波, 时间序列, SVM

中图分类号: