测绘通报 ›› 2018, Vol. 0 ›› Issue (4): 16-22.doi: 10.13474/j.cnki.11-2246.2018.0103

• 行业观察 • 上一篇    下一篇

一种MBR约束下的高分光学影像直角建筑物提取与标绘方法

李百寿1,2, 李灵芝1, 张强1   

  1. 1. 桂林理工大学测绘地理信息学院, 广西 桂林 541004;
    2. 广西空间信息与测绘重点实验室, 广西 桂林 541004
  • 收稿日期:2017-08-10 修回日期:2018-02-04 出版日期:2018-04-25 发布日期:2018-05-03
  • 作者简介:李百寿(1980-),男,博士,副教授,研究方向为空间信息智能处理与理解。E-mail:lbszhb@163.com
  • 基金资助:

    国家自然科学基金(41161073);广西自然科学基金(2016GXNSFAA380013);桂林市科学研究与技术开发计划(2016012601);重庆基础科学与前沿技术研究(重点项目)(cstc2015jcyjB028)

A Method for Right Angle Building Extracting and Mapping Based on MBR Constraints in High Resolution Optical Image

LI Baishou1,2, LI Lingzhi1, ZHANG Qiang1   

  1. 1. College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541004, China;
    2. Guangxi Key Laboratory of Spatial Information and Geomatics, Guilin 541004, China
  • Received:2017-08-10 Revised:2018-02-04 Online:2018-04-25 Published:2018-05-03

摘要:

针对高空间分辨率遥感影像中建筑物信息提取与标绘问题,提出了一种MBR约束下的高分光学影像中直角建筑物信息提取与标绘方法。首先采用多尺度影像对象分割与CART决策树分类技术,提取影像中的建筑物区域;其次用Candy算子提取出建筑物的粗轮廓,并将其转化为点集形式表示;然后通过轮廓点集计算建筑物最小外包矩形(MBR),对建筑物的轮廓进行分段拟合与优化;最后通过交点方向决策器确定建筑物的角点,依次连接各角点实现建筑物的标绘。通过计算建筑物的面积与周长,确定周长相对精度为93.3%,面积相对精度为96.1%,本文方法可以有效提高建筑物的标绘精度。

关键词: CART决策树, 最小外包矩形, 高分光学影像, 直角建筑物标, 形状标绘

Abstract:

Aiming at the problem of building extraction and mapping in high spatial resolution remote sensing images,a method based on MBR constraints is proposed.Firstly,this paper extracts the building from the image by using the multi-scale segmentation method and CART decision tree classification technology. Secondly,this paper extracts the rough contour of the building by using Candy operator,and expresses as point set for calculating building MBR,piecewise fitting and optimization the contour of buildings.Finally,this paper through the point direction decision maker seeks building's angular points and realizes building's mapping.After calculating building's area and perimeter,we can ensure that perimeter relative accuracy is 93.3%,area relative accuracy is 96.1%.The presented method can effectively improve the precision of buildings mapping.

Key words: CART decision tree, MBR, high spatial resolution optical images, right angle building, mapping

中图分类号: