[1] WANG J H, ZHANG L R, DAI A G, et al. A near-global, 2-hourly data set of atmospheric precipitable water from ground-based GPS measurements[J]. Journal of Geophysical Research:Atmospheres, 2007, 112(D11):D007529. [2] JACOB D. The role of water vapour in the atmosphere. A short overview from a climate modeller's point of view[J]. Physics and Chemistry of the Earth Part A Solid Earth and Geodesy, 2001, 26(6-8):523-527. [3] WANG J H, ZHANG L Y. Climate applications of a global, 2-hourly atmospheric precipitable water dataset derived from IGS tropospheric products[J]. Journal of Geodesy, 2009, 83:209-217. [4] ROCKEN C, WARE R, VAN HOVE T, et al. Sensing atmospheric water vapor with the global positioning system[J]. Geophysical Research Letters, 1993, 20(23):2631-2634. [5] BEVIS M, BUSINGER S, HERRING T A, et al. GPS meteorology:remote sensing of atmospheric water vapor using the global positioning system[J]. Journal of Geophysical Research:Atmospheres, 1992, 97(D14):15787-15801. [6] ZHANG K, MANNING T, WU S, et al. Capturing the signature of severe weather events in Australia using GPS measurements[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(4):1839-1847. [7] SUPARTA W, RAHMAN R. Spatial interpolation of GPS PWV and meteorological variables over the west coast of Peninsular Malaysia during 2013 Klang Valley Flash Flood[J]. Atmospheric Research, 2016, 168:205-219. [8] ZHAO Q Z, YAO Y B, YAO W Q. GPS-based PWV for precipitation forecasting and its application to a typhoon event[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2018, 167:124-133. [9] ASKNE J, NORDIUS H. Estimation of tropospheric delay for microwaves from surface weather data[J]. Radio Science, 1987, 22(3):379-386. [10] YAO Y B, XU C Q, ZHANG B, et al. GTm-Ⅲ:a new global empirical model for mapping zenith wet delays onto precipitable water vapour[J]. Geophysical Journal International, 2014, 197(1):202-212. [11] ROSS R J, ROSENFELD S. Estimating mean weighted temperature of the atmosphere for global positioning system applications[J]. Journal of Geophysical Research, 1997,102(D18):21719-21730. [12] EMARDSON T R, DERKS H J P. On the relation between the wet delay and the integrated precipitable water vapour in the European atmosphere[J]. Meteorological Applications, 2000, 7(1):61-68. [13] 姚朝龙, 罗志才, 刘立龙, 等. 顾及地形起伏的中国低纬度地区湿延迟与可降水量转换关系研究[J]. 武汉大学学报(信息科学版), 2015, 40(7):907-912. [14] YAO Y B, ZHU S, YUE S Q. A globally applicable, season-specific model for estimating the weighted mean temperature of the atmosphere[J]. Journal of Geodesy, 2012, 86(12):1125-1135. [15] YAO Y B, XU C Q, ZHANG B, et al. A global empirical model for mapping zenith wet delays onto precipitable water vapor using GGOS Atmosphere data[J]. Science China Earth Sciences, 2015, 58(8):1361-1369. [16] YAO Y B, ZHANG B, YUE S Q, et al. Global empirical model for mapping zenith wet delays onto precipitable water[J]. Journal of Geodesy, 2013, 87(5):439-448. [17] HUANG L R, JIANG W P, LIU L L, et al. A new global grid model for the determination of atmospheric weighted mean temperature in GPS precipitable water vapor[J]. Journal of Geodesy, 2019, 93(2):159-176. [18] 许超钤, 姚宜斌, 张豹, 等.GGOS Atmosphere大气加权平均温度数据的精度检验与分析[J]. 测绘地理信息,2014, 39(4):13-16. [19] HE C Y, WU S Q, WANG X M, et al. A new voxel-based model for the determeanation of atmospheric weighted mean temperature in GPS atmospheric sounding[J]. Atmospheric Measurement Techniques, 2017, 10(6):2045-2060. [20] BÖHM J, MOLLER G, SCHINDELEGGER M, et al. Development of an improved empirical model for slant delays in the troposphere (GPT2w)[J]. GPS Solutions, 2015, 19(3):433-441. |