测绘通报 ›› 2021, Vol. 0 ›› Issue (9): 103-107.doi: 10.13474/j.cnki.11-2246.2021.0283

• 区域测绘创新成果 • 上一篇    下一篇

卡尔曼滤波在山西省西山煤田地面沉降GNSS监测中的应用

章诗芳, 张锦   

  1. 太原理工大学矿业工程学院, 山西 太原 030024
  • 收稿日期:2021-04-20 出版日期:2021-09-25 发布日期:2021-10-11
  • 通讯作者: 张锦。E-mail:zhangjin@tyut.edu
  • 作者简介:章诗芳(1982-),女,博士生,主要从事矿区地面沉降监测数据处理研究。E-mail:zsfgis2000@163.com
  • 基金资助:
    国家自然科学基金(41771443);国家重点研发计划(2018YFB0505402)

Application of Kalman filter in GNSS monitoring of ground subsidence in Xishan coalfield of Shanxi province

ZHANG Shifang, ZHANG Jin   

  1. College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, China
  • Received:2021-04-20 Online:2021-09-25 Published:2021-10-11

摘要: 本文以山西省西山煤田某一工作面为试验区,在分析地面沉降全球卫星导航系统(GNSS)监测数据特征的基础上,利用两种卡尔曼滤波方法(普通和总体卡尔曼滤波)对矿区地面沉降GNSS监测数据进行了处理与评价,同时对比了两种卡尔曼滤波方法的均方根误差分布情况。试验结果表明,两种滤波方法的滤波结果与观测值趋势大致相同,但存在少数异常点。下沉量越大的监测点,滤波结果与观测值的差异越大,但总体卡尔曼滤波的差异明显小于普通卡尔曼滤波,特别是对于下沉量较大的监测点。下沉量越大的监测点,其均方根误差越大,总体卡尔曼滤增大的速度远小于普通卡尔曼滤波,总体卡尔曼滤波均方根误差的最大值小于0.1 m,普通卡尔曼滤波的则接近0.4 m。

关键词: 普通卡尔曼滤波, 总体卡尔曼滤波, 矿区地面沉降, GNSS监测, 均方根误差, 西山煤田

Abstract: Taking one working face of Xishan coalfield in Shanxi province as the experiment area, this paper processes and evaluates the GNSS (global navigation satellite system) monitoring data about mining ground subsidence using two Kalman filter methods (usual Kalman filter and total Kalman filter), on the basis of analyzing the data characteristics of GNSS monitoring data, and compares the distribution status of root mean square error (RMSE) of the two Kalman filter methods. The research results show that the tendency is similar between the filter results of the two methods and the observation values, although a few abnormal points exist. The difference between the filter results and the observation values becomes higher when the subsidence larger, and the difference for the total Kalman filter is much lower than the usual Kalman filter, especially for the monitoring points in the large subsidence area. The RMSE values increase with the rise of the subsidence for the monitoring points, and the increasing velocity for the total Kalman filter is much lower than the usual Kalman filter. The maximum RMSE value for the total Kalman filter is lower than 0.1 m, but it is approximate to 0.4 m for the usual Kalman filter.

Key words: usual Kalman filter, total Kalman filter, mining ground subsidence, GNSS monitoring, RMSE, Xishan coalfield

中图分类号: