测绘通报 ›› 2022, Vol. 0 ›› Issue (12): 77-83.doi: 10.13474/j.cnki.11-2246.2022.0360

• 学术研究 • 上一篇    下一篇

融合激光点云与影像点云的精细化DEM生成

戴华毅1,2, 李守军1,2,3, 张梓巍2,3, 阳凡林1,4, 毛冬海1,2, 陈祥2,3   

  1. 1. 山东科技大学测绘与空间信息学院, 山东 青岛 266590;
    2. 自然资源部海底科学重点实验室, 浙江 杭州 310012;
    3. 自然资源部第二海洋研究所, 浙江 杭州 310012;
    4. 自然资源部海洋测绘重点实验室, 山东 青岛 266590
  • 收稿日期:2022-05-30 修回日期:2022-10-26 发布日期:2023-01-05
  • 通讯作者: 李守军。E-mail:0911guang@163.com
  • 作者简介:戴华毅(1994-),男,硕士,研究方向为无人机航空摄影测量与激光点云数据处理方法。E-mail:756853228@qq.com
  • 基金资助:
    中央级公益性科研院所基本科研业务费专项(JG2110);全球变化与海气相互作用专项二期(20094G;QQ21045G);国家自然科学基金(41576099);国家重点研发计划(2016YFC1401210);浙江省沿海滩涂(潮间带)资源监测与评价项目(SJ21003;SJ21181)

Refined DEM generation based on fusion of laser point cloud and image point cloud

DAI Huayi1,2, LI Shoujun1,2,3, ZHANG Ziwei2,3, YANG Fanlin1,4, MAO Donghai1,2, CHEN Xiang2,3   

  1. 1. College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China;
    2. Key Laboratory of Submarine Geosciences, Ministry of Natural Resources, Hangzhou 310012, China;
    3. Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China;
    4. Key Laboratory of Marine Surveying and Mapping, Ministry of Natural Resources, Qingdao 266590, China
  • Received:2022-05-30 Revised:2022-10-26 Published:2023-01-05

摘要: 针对地面激光扫描及无人机航摄技术在实际外业测量中受视场角限制或遮挡等因素的影响而难以获取待测区域完整的点云数据的问题,本文在经典ICP算法的基础上,提出了一种顾及高程差异和点云密度的激光点云与影像点云融合方法。通过差分数字高程模型对点云进行分块,并基于点云密度选取融合范围,将分块后的影像点云配准到激光点云的孔洞和稀疏区域。本文方法能够提高激光点云与影像点云的融合效果,保持激光点云的精度并保留更多的细节特征,实现激光点云与影像点云的高质量融合。

关键词: 激光点云, 影像点云, 分块配准, 点云融合, 差分数字高程模型

Abstract: In view of the problem that the ground laser scanning and UAV aerial photography technology is difficult to obtain the complete point cloud data of the area to be measured due to factors such as field angle limitation or occlusion in actual field measurement, based on the classical ICP algorithm, this paper proposes a fusion method of laser point cloud and image point cloud considering the elevation difference and point cloud density, divides the point cloud into blocks by differential digital elevation model, selects the fusion range based on the point cloud density, and registers the segmented image point cloud to the holes and sparse areas of the laser point cloud. The method in this paper can improve the fusion effect of laser point cloud and image point cloud, keep the precision of laser point cloud and retain more detailed features, and realize the high-quality fusion of laser point cloud and image point cloud.

Key words: image point cloud, laser point cloud, block registration, point cloud fusion, differential digital elevation model

中图分类号: