测绘通报 ›› 2023, Vol. 0 ›› Issue (7): 119-124.doi: 10.13474/j.cnki.11-2246.2023.0211

• 技术交流 • 上一篇    下一篇

联合LiCSBAS和机器学习的昆明市地面监测和预测

李洋洋1, 左小清1, 肖波1,2, 李勇发1, 杨栩1, 董玉娟1   

  1. 1. 昆明理工大学国土资源工程学院, 云南 昆明 650093;
    2. 云南交通职业技术学院公路与 建筑工程学院, 云南 昆明 650500
  • 收稿日期:2023-02-21 出版日期:2023-07-25 发布日期:2023-08-08
  • 通讯作者: 左小清。E-mail:zxq@kust.edu.cn
  • 作者简介:李洋洋(1998-),男,硕士生,研究方向为InSAR技术监测应用与精度分析。E-mail:1208825765@qq.com
  • 基金资助:
    国家自然科学基金(42161067)

Combined LiCSBAS and machine learning ground monitoring and prediction method for Kunming city

LI Yangyang1, ZUO Xiaoqing1, XIAO Bo1,2, LI Yongfa1, YANG Xu1, DONG Yujuan1   

  1. 1. Institute of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China;
    2. Yunnan Communications Vocational and Technical College, School of Highway and Construction Engineering, Kunming 650500, China
  • Received:2023-02-21 Online:2023-07-25 Published:2023-08-08

摘要: 针对InSAR在数据处理过程中存在对流层延迟误差、解缠误差及处理大范围区域数据需要消耗大量时间和磁盘空间的问题,本文首先利用LiCSBAS和GACOS产品对2016年9月16日至2021年5月5日昆明市134景Sentinel-1升降轨影像进行数据处理,获取昆明市主城区沉降信息,在此基础上得到5个典型地表沉降区并分析其时空分布特征;然后利用深度森林和长短期记忆网络模型进行时序值的预测,引入绝对误差(ε)、均方根误差(RMSE)、纳什系数(NSE)对模型进行评价,深度森林和长短期记忆模型得到的ε均在4 mm以内,RMSE值分别为0.70和3.01,NSE值分别为0.92和0.81。结果表明,深度森林预测模型效果较好,联合LiCSBAS和机器学习模型的城市地表监测和预测的方法可以为今后开展地面沉降监测和灾害预警提供参考。

关键词: 对流层延迟误差, LiCSBAS, 解缠误差, 深度森林, 时序预测

Abstract: To address the problems of tropospheric delay errors, deconvolution errors and the large amount of time and disk space required to process data over a large area in InSAR during data processing,in this paper, the atmospheric correction data of 134 Sentinel-1 lifting rail images of Kunming city from September 16, 2016 to May 5, 2021 are processed by LiCSBAS and synthetic aperture radar general atmospheric correction online service product, and the subsidence information of the main urban area of Kunming city is obtained.On this basis, five typical land surface subsidence areas are obtained and their temporal and spatial distribution characteristics are analyzed. Then, deep forest and long term memory network models are used to predict the time series values, and absolute error (ε), root mean square error (RMSE) and nash coefficient (NSE) are introduced to evaluate the models. Both the deep forest and LSTM prediction models are within 4 mm, RMSE values are 0.70 and 3.01, and NSE values are 0.92 and 0.81, respectively.The results show that the deep forest prediction model has a good effect. The urban surface monitoring and prediction method combined with LiCSBAS and machine learning model can provide a reference for future land subsidence monitoring and disaster warning.

Key words: tropospheric delay error, LiCSBAS, deconvolution error, deep forest, time series prediction

中图分类号: