测绘通报 ›› 2024, Vol. 0 ›› Issue (1): 58-64.doi: 10.13474/j.cnki.11-2246.2024.0110

• 学术研究 • 上一篇    下一篇

联合PS-InSAR技术与多变量LSTM神经网络的高铁路基冻胀形变预测研究

李鑫1,2,3, 魏冠军1,2,3, 张德龙1,2,3   

  1. 1. 兰州交通大学测绘与地理信息学院, 甘肃 兰州 730070;
    2. 地理国情监测技术应用国家地方联合工程研究中心, 甘肃 兰州 730070;
    3. 甘肃省地理国情监测工程实验室, 甘肃 兰州 730070
  • 收稿日期:2023-05-06 出版日期:2024-01-25 发布日期:2024-01-30
  • 通讯作者: 魏冠军。E-mail:77217808@qq.com
  • 作者简介:李鑫(1997—),男,硕士,研究方向为高铁路基冻胀形变监测。E-mail:740672689@qq.com
  • 基金资助:
    国家自然科学基金(41964008)

Research on frost heave deformation prediction of high railway foundation combined with PS-InSAR technology and multivariable LSTM neural network

LI Xin1,2,3, WEI Guanjun1,2,3, ZHANG Delong1,2,3   

  1. 1. School of Geomatics and Geographic Information, Lanzhou Jiaotong University, Lanzhou 730070, China;
    2. National and Local Joint Engineering Research Center of Geographical Monitoring Technology Application, Lanzhou 730070, China;
    3. Gansu Provincial Engineering Laboratory of Geographical Monitoring, Lanzhou 730070, China
  • Received:2023-05-06 Online:2024-01-25 Published:2024-01-30

摘要: 针对传统形变监测及预测难以做到大范围监测和精准预测的问题,本文提出了联合PS-InSAR技术和多变量长短期记忆 (M-LSTM) 神经网络监测和预测高铁路基冻胀形变的方法。首先,该方法利用PS-InSAR技术获取路基冻胀空间分布特征;然后,使用皮尔逊相关系数法优化出3种冻胀诱发因素,所得数据经预处理后组成训练数据;最后,引入LSTM构建智能化、多变量冻胀预测模型,精确地预测路基冻胀形变趋势。研究结果表明,PS-InSAR技术在大范围形变监测中具有可靠性,M-LSTM模型预测精度比传统神经网络模型更高,平均判定系数(R2)、平均绝对误差(MAE)和平均均方根误差(RMSE)分别为0.973、0.024 mm和0.035 mm,说明M-LSTM模型在高铁路基冻胀形变预测中具有较好的应用价值,同时也为路基冻胀形变预测提供了新思路。

关键词: PS-InSAR, 多变量LSTM模型, 高铁路基冻胀, 形变预测

Abstract: Aiming at the problem that traditional deformation monitoring and prediction are difficult to achieve large-scale monitoring and accurate prediction, a method combining PS-InSAR technology and multi-variable long Short term memory (M-LSTM) neural network is proposed to monitor and predict the frost heave deformation of high railway foundation. Firstly, PS-InSAR technology is used to obtain the spatial distribution characteristics of subgrade frost heave. Then, Pearson correlation coefficient method is used to optimize three kinds of frost heave induced factors, and the obtained data are preprocessed to compose the training data. Finally, LSTM is introduced to construct an intelligent and multivariable frost heave prediction model to accurately predict the frost heave deformation trend of subgrade. The results show that PS-InSAR technology is reliable in large-scale deformation monitoring. The prediction accuracy of M-LSTM model is higher than that of the traditional neural network model, and the mean determination coefficient (R2), mean absolute error (MAE) and mean root mean square error (RMSE) are 0.973,0.024 mm and 0.035 mm, respectively. It shows that M-LSTM model has good application value in frost heave deformation prediction of high railway foundation, and also provides a new idea for frost heave deformation prediction of subgrade.

Key words: PS-InSAR, multivariate LSTM model, high railway roadbed frost heaving, deformation prediction

中图分类号: