测绘通报 ›› 2024, Vol. 0 ›› Issue (3): 134-139.doi: 10.13474/j.cnki.11-2246.2024.0323

• 技术交流 • 上一篇    下一篇

基于深度学习技术的贵州省耕地占用遥感监测

王红雷, 严文璞   

  1. 贵州省第三测绘院, 贵州 贵阳 550004
  • 收稿日期:2023-08-10 发布日期:2024-04-08
  • 通讯作者: 严文璞,E-mail: 504799423@qq.com
  • 作者简介:王红雷(1985—),男,硕士,高级工程师,主要从事3S理论研究和应用开发,长期致力于测绘地理信息、智慧城市建设及自然资源监测技术研究和应用推广。E-mail: 77133320@qq.om

Remote sensing monitoring of cultivated land occupancy in Guizhou province based on deep learning technology

WANG Honglei, YAN Wenpu   

  1. The Third Surveying and Mapping Institute of Guizhou Province, Guiyang 550004, China
  • Received:2023-08-10 Published:2024-04-08

摘要: 贵州省耕地资源相对有限,播面增长空间小,耕地占用对区域农业生产和粮食安全产生了重要影响。及时监测土地占用,对农田保护、减小损失具有重要的意义。遥感技术可以在耕地占用监测中发挥重要作用,然而由于地表结构的复杂性,高精度的耕地占用监测面临较大困难。为提高监测精度,本文研究使用深度学习技术来监测贵州全省的耕地占用情况。首先,利用多类型、高频次的高分辨率卫星影像,获取贵州省全域范围内的大量样本,据此挖掘遥感图像中的耕地占用信息;然后,联合使用卷积神经网络和[JP+1]循环神经网络,构建耕地变化监测深度学习网络模型,从遥感图像的光谱、空间和时相信息中提取耕地变化情况;最后,选取典型区域对监测结果进行了精度验证。结果表明,该方法可快速监测出贵州省占用耕地区域,为相关部门提供决策参考和监管手段。

关键词: 耕地乱占用, 深度学习, 变化检测, 遥感影像, 贵州省

Abstract: Guizhou province is confronted with a relative deficiency of arable land resources, limited scope for expanding its cultivated areas,posing a challenge to its regional agricultural production and food security. Timely monitoring of land occupation is of great significance for farmland protection and loss reduction. Remote sensing technology can play an important role in monitoring cropland occupation, however, due to the complexity of the surface structure, high-precision monitoring of cropland occupation faces greater difficulties. In order to improve the monitoring accuracy, this paper investigates the use of deep learning technology to monitor the cultivated land occupation in Guizhou province. Firstly,multi-type and high-frequency high-resolution satellite images are utilized to obtain a large number of samples in the whole area of Guizhou province, according to which the information of cultivated land occupation in remote sensing images is mined. Then,convolutional neural network and recurrent neural network are jointly used to construct a deep learning network model for monitoring cropland changes, and cropland changes are extracted from the spectral, spatial and temporal phase information of remote sensing images. Finally,typical areas are selected to verify the accuracy of the monitoring results. The results show that the method can quickly monitor the areas of occupied cropland in Guizhou province, and provide decision-making references and regulatory tools for relevant departments.

Key words: misappropriation of arable land, deep learning, change detection, remote sensing image, Guizhou province

中图分类号: