测绘通报 ›› 2024, Vol. 0 ›› Issue (4): 23-28.doi: 10.13474/j.cnki.11-2246.2024.0405

• 学术研究 • 上一篇    

一种基于深度学习与图像局部特征提取的边坡异常监测技术

林泊锟1, 丁勇1, 李登华2,3   

  1. 1. 南京理工大学物理学院, 江苏 南京 210094;
    2. 南京水利科学研究院, 江苏 南京 210024;
    3. 水利部水库大坝安全重点实验室, 江苏 南京 210024
  • 收稿日期:2023-07-31 发布日期:2024-04-29
  • 通讯作者: 丁勇。E-mail:njustding@163.com
  • 作者简介:林泊锟(1998—),男,硕士生,研究方向为结构健康监测。E-mail:linbokunnjust@sina.com
  • 基金资助:
    国家重点研发计划(2022YFC3005502);国家自然科学基金(51979174);国家自然科学基金联合基金(U2040221)

A slope anomaly monitoring technology based on deep learning and image local feature extraction

LIN Bokun1, DING Yong1, LI Denghua2,3   

  1. 1. School of Physics, Nanjing University of Science and Technology, Nanjing 210094, China;
    2. Nanjing Hydraulic Research Institute, Nanjing 210024, China;
    3. Key Laboratory of Reservoir Dam Safety, Ministry of Water Resources, Nanjing 210024, China
  • Received:2023-07-31 Published:2024-04-29

摘要: 为提升边坡险情的监测能力,本文提出了一种基于深度学习与图像局部特征提取的边坡异常监测技术。该技术通过提取边坡自然特征物的二维坐标构成目标三角网络,以三角网络的变化区域圈定边坡险情范围,并提取变化范围内的同名特征点,以同名特征点的位移情况对边坡的变化进行描述。首先,拍摄边坡发生险情前后的图像,利用目标检测模型YOLOv5识别边坡自然特征物,利用语义分割模型DeepLabV3+对提取的自然特征物进行语义分割得到其二值化区域,提取区域中心得到二维坐标,以所有自然特征物的二维坐标点阵构建目标三角网络,并以三角网络变化圈定边坡的变化范围。然后,利用图像特征提取技术,提取变化范围之内的同名特征点,并统计其位移距离与方向,以此反馈边坡的变化情况。最后,设计了试验验证该方法的稳定性与可靠性,并在真实的边坡验证了方法的实用性。试验结果表明,该技术能够对边坡的变化进行有效监测,是边坡监测工程中的一种可行技术。

关键词: 边坡, 自然特征物, 监测, 三角网络, 深度学习, 特征提取

Abstract: In order to improve the monitoring ability of slope hazards,this paper proposes a slope anomaly monitoring technology based on deep learning and image local feature extraction. By extracting the two-dimensional coordinates of natural features of the slope,this technology constructs the triangular target network. As the slope danger range is defined by the changing area of the triangular network,feature points with the same name are extracted within the change range,while the displacement of those feature points describes the slope change. The first step is to take images before and after the slope occurs,followed by identifying the natural features of the slope with the target detection model YOLOv5. In the semantic segmentation model DeepLabV3+,the extracted natural features are semantically segmented to obtain their binarized areas,and their two-dimensional coordinates are determined by determining the centre of the binarized area. As a next step,the triangular target network will be constructed by combining the two-dimensional coordinate lattices of all natural features,and the slope change range is delineated as the triangular network changes. After analyzing the image,the feature points with the same names within the change range are extracted using the image feature extraction technology,and their displacement distance and direction are used to evaluate the slope change. According to the test results,this technology is effective at monitoring slope changes,and it is a feasible tool for slope monitoring engineers.

Key words: slope, natural features, monitor, triangular network, deep learning, feature extraction

中图分类号: