测绘通报 ›› 2024, Vol. 0 ›› Issue (6): 103-108.doi: 10.13474/j.cnki.11-2246.2024.0618

• 学术研究 • 上一篇    

三维场叠加视频流的电子围栏越界检测方法

尹泽中, 李功权   

  1. 长江大学地球科学学院, 湖北 武汉 430100
  • 收稿日期:2023-09-06 修回日期:2024-03-23 发布日期:2024-06-27
  • 通讯作者: 李功权。E-mail:195648169@qq.com
  • 作者简介:尹泽中(1998—),男,硕士生,研究方向为物联网、三维GIS应用。E-mail:1562691412@qq.com
  • 基金资助:
    国家自然科学基金青年科学基金(41701537)

Electronic fence out-of-bounds detection method based on 3D field superimposed video stream

YIN Zezhong, LI Gongquan   

  1. School of Geosciences, Yangtze University, Wuhan 430100, China
  • Received:2023-09-06 Revised:2024-03-23 Published:2024-06-27

摘要: 随着实景三维城市建设的飞速发展,如今电子地图可采用三维实景呈现,且利用更加智能的图像处理方法使现实世界与实景模型数据实现虚实结合。在此背景下,针对二维场景下电子围栏检测方法出现的问题,本文提出了一种视频与三维实景融合下的电子围栏越界检测方法。底层数据基于实景三维模型和监控视频流,首先建立地理场景下视频监控投射的虚拟三维空间电子围栏,同时让视频接入优化的深度学习神经网络模型并应用人体姿势估计,通过坐标转换把估计点坐标和围栏坐标转换为三维局部坐标;然后将检测算法与规划的三维电子围栏作实时比对,实现物体越界的实时有效判断,且在不同视频场景下进行试验验证。结果表明,该方法有效、可行,无须特定的硬件支持及场景条件约束。

关键词: 视频融合, 电子围栏, 深度学习, 坐标转换, 越界检测

Abstract: With the rapid development of real-life 3D city construction, electronic maps can now be presented in 3D real-life scenes, and use more intelligent image processing methods to integrate the real world and real-world model data to achieve the combination of virtual and reality. In this context, in view of some problems in the detection method of electronic fence in 2D scenes, this paper proposes a cross-border detection method of electronic fence in the case of the fusion of video and three-dimensional real scene. The underlying data is based on the real-world 3D model and the surveillance video stream, firstly, the virtual 3D space electronic fence projected by video surveillance in the geographical scene is established, and at the same time, the video is connected to the optimized deep learning neural network model and the human posture estimation is applied, and the estimated point coordinates and fence coordinates are converted into 3D local coordinates through coordinate conversion, and then the detection algorithm is compared with the planned 3D electronic fence in real time to realize the real-time and effective judgment of the object crossing the boundary. Through experimental verification in different video scenarios, the results show that the method is effective and feasible, without specific hardware support and scene constraints.

Key words: video fusion, electronic fence, deep learning, coordinate conversion, out-of-bounds detection

中图分类号: