测绘通报 ›› 2024, Vol. 0 ›› Issue (12): 18-23.doi: 10.13474/j.cnki.11-2246.2024.1204

• 学术研究 • 上一篇    下一篇

改进YOLOv8的SAR影像船舰目标检测模型

杨明秋, 陈国坤, 左小清, 董燕   

  1. 昆明理工大学国土资源工程学院, 云南 昆明 650093
  • 收稿日期:2024-03-11 发布日期:2024-12-27
  • 通讯作者: 陈国坤,E-mail:chengk@radi.ac.cn E-mail:chengk@radi.ac.cn
  • 作者简介:杨明秋(1995-),男,硕士生,主要从事遥感图像目标检测方面的研究工作。E-mail:3037058867@qq.com
  • 基金资助:
    国家自然科学基金(42161067);云南省重大科技专项计划(202202AD080010)

Improving the SAR image ship target detection model of YOLOv8

YANG Mingqiu, CHEN Guokun, ZUO Xiaoqing, DONG Yan   

  1. Faculty of Land and Resources Engineering, Kunming University of Science And Technology, Kunming 650093, China
  • Received:2024-03-11 Published:2024-12-27

摘要: 在SAR影像船舰目标检测任务中,受近海岸区域背景复杂和船舰目标多尺度等因素影响,船舰目标在检测过程中出现检测精度不高、漏检的问题。针对上述问题,本文提出了一种基于YOLOv8s改进的SAR影像船舰目标检测模型,并在SSDD和HRSID数据集上进行试验验证,效果优于其他经典算法。

关键词: 船舰目标检测, SAR影像, 残差增强, 可变形卷积, 动态稀疏注意力

Abstract: In the SAR image ship target detection task, due to factors such as complex coastal background and multi-scale ship targets, ship targets may have low detection accuracy and missed detections during the detection process. In response to the above issues, this article proposes an improved SAR image ship target detection model based on YOLOv8s, and conducts experimental verification by SSDD and HRSID datasets, with better performance than other classical algorithms.

Key words: ship target detection, SAR imaging, residual enhancement, deformable convolution, dynamic sparse attention

中图分类号: