测绘通报 ›› 2025, Vol. 0 ›› Issue (4): 63-67,74.doi: 10.13474/j.cnki.11-2246.2025.0411

• 学术研究 • 上一篇    

基于粒子群优化和互信息的特征优化与油菜倒伏识别

王克晓, 李波   

  1. 重庆市农业科学院农业科技信息研究所, 重庆 401329
  • 收稿日期:2024-09-05 发布日期:2025-04-28
  • 作者简介:王克晓(1986—),男,硕士,助理研究员,研究方向为农业遥感。E-mail:wangkexiao_2007@126.com
  • 基金资助:
    重庆市农业科学院市级财政科研项目(cqaas2023sjczhx003);农业农村部农业监测预警技术重点实验室开放课题(KLAMEWT202402)

Feature optimization and rapeseed lodging recognition based on particle swarm optimization and mutual information

WANG Kexiao, LI Bo   

  1. Institute of Agricultural Information Science and Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
  • Received:2024-09-05 Published:2025-04-28

摘要: 为实现倒伏油菜可见光遥感高精度提取,本文基于试验区的可见光植被指数、可见光主成分波段纹理和数字表面模型(DSM)等特征,提出了一种基于粒子群优化和互信息(PSO-MI)的特征优化与油菜倒伏集成学习识别算法。通过提出粒子群随机循环搜索方法,引入互信息阈值自适应策略和确定适用度函数进行油菜倒伏特征筛选;随后通过逻辑回归元学习器联合K最近邻、随机森林及支持向量机3种基学习器构建了基于优化特征的油菜倒伏识别Stacking集成学习模型,实现了倒伏油菜区域的准确识别,有效提高了倒伏油菜识别精度。本文提供了一种随机智能特征优化与高性能机器集成学习相结合的目标识别方法,可为目标地物遥感提取提供技术参考。

关键词: 可见光遥感, 油菜倒伏, 粒子群特征优化, 集成学习

Abstract: To achieve the high-precision extraction of rapeseed lodging by visible remote sensing, this paper put forward a feature optimization and rapeseed lodging recognition algorithm based on particle swarm optimization-mutual information (PSO-MI) and stacking ensemble learning by the visible vegetation indices, principal component band texture features, and DSM of the experimental area. This paper proposed the particle swarm random loop search method, introduced the mutual information threshold adaptive strategy, and built the applicability function to screen the lodging characteristics of rapeseed. A stacking ensemble learning model based on optimized features was constructed using logistic regression (LR) meta learner combined with four base learners, namely, K-nearest neighbor (KNN), random forest (RF) and support vector machine (SVM), which realized the identification of lodging rapeseed and mapping, and effectively improved the accuracy of lodging rapeseed recognition. This study provides a target recognition method combining stochastic intelligent feature optimization and high-performance machine ensemble learning, which can provide a technical reference for remote sensing extraction of target features.

Key words: visible remote sensing, rapeseed lodging, particle swarm feature optimization, ensemble learning

中图分类号: