测绘通报 ›› 2025, Vol. 0 ›› Issue (12): 15-19.doi: 10.13474/j.cnki.11-2246.2025.1203

• 学术研究 • 上一篇    

融合多视角影像与深度学习的三维建筑模型真实纹理自动修复与应用

刘亚文1,2, 田沁1, 郭丙轩3, 李德民4   

  1. 1. 自然资源部城市国土资源监测与仿真重点实验室, 广东 深圳 518034;
    2. 湖北工业大学, 湖北 武汉 430068;
    3. 武汉大学测绘遥感信息工程全国重点实验室, 湖北 武汉 430072;
    4. 浙江安防职业技术学院, 浙江 温州 325016
  • 收稿日期:2025-05-07 发布日期:2025-12-31
  • 通讯作者: 李德民。E-mail:23086567@zjcst.edu.cn
  • 作者简介:刘亚文(1991—),女,博士,讲师,研究方向为计算机图形学、数字城市实景三维模型构建。E-mail:liuyawen@hbut.edu.cn
  • 基金资助:
    自然资源部城市国土资源监测与仿真重点实验室开放基金(KF-2022-07-003);温州市基础性公益科研项目(2024G0153)

Integration of multi-view images and deep learning for automated restoration and application of realistic textures in 3D building models

LIU Yawen1,2, TIAN Qin1, GUO bingxuan3, LI Demin4   

  1. 1. Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources, Shenzhen 518034, China;
    2. School of Computer Science, Hubei University of Technology, Wuhan 430068, China;
    3. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430072, China;
    4. Zhejiang College of Security Technology, Wenzhou 325016, China
  • Received:2025-05-07 Published:2025-12-31

摘要: 兼具几何精度与真实纹理的三维建筑模型已成为国家新型基础设施建设的重要组成部分。由于无人机飞行条件、建筑物布局等因素限制,三维建筑模型纹理映射出现大量的真实纹理遮挡问题,影响其可视化效果及查询、测量等应用功能。现有方法以单张纹理影像为修复基础,将遮挡区域视为未知随机变量进行处理,导致纹理修复可能偏离建筑物真实的立面特征。本文基于建筑物同一立面在不同视角的影像中遮挡范围不同的特点,提出了一种结合多视角影像和深度学习网络的立面纹理遮挡自动修复算法,根据纹理对齐后的多视角纹理的结构相似度提取遮挡区域,通过图割方法自动合成立面真实纹理,并利用DeepFill模型对合成纹理进行修复优化。试验表明,该方法可以修复40%以上遮挡区域的真实纹理,修复后立面纹理的SSIM值和PSNR值相较于现有方法有所提升。

关键词: 实景三维模型, 纹理映射, 结构相似度, 纹理遮挡

Abstract: 3D building models with both geometric accuracy and realistic textures have become an important component of the national new infrastructure construction.Due to constraints such as UAV flight conditions and building layout,a large number of real texture occlusion problems occur in the texture mapping of 3D building models,which affect their visualization effects and the functions of applications such as query and measurement.Existing methods are based on a single texture image for repair and treat the occluded area as an unknown random variable,leading to possible deviations of texture repair from the real facade features of buildings.Based on the characteristic that the occlusion range of the same facade of a building varies in images from different perspectives,this paper proposes an automatic facade texture occlusion repair algorithm combining multi-view images and deep learning networks.The algorithm extracts the occluded area by using the structural similarity of multi-view textures after texture alignment,automatically synthesizes the real facade texture through the graph-cut method,and uses the DeepFill model to repair and optimize the synthesized texture.Experiments show that this method can repair the real texture of more than 40% of the occluded area,and the SSIM and PSNR values of the repaired facade texture are improved compared with existing methods.

Key words: 3D real scene model, texture mapping, structural similarity, texture occlusion

中图分类号: