测绘通报 ›› 2016, Vol. 0 ›› Issue (2): 1-7.doi: 10.13474/j.cnki.11-2246.2016.0037.
ZHU Xiangwei, XU Bo, LI Jingyuan, NIE Junwei, OU Gang
Received:
2015-11-02
Online:
2016-02-25
Published:
2016-03-08
CLC Number:
ZHU Xiangwei, XU Bo, LI Jingyuan, NIE Junwei, OU Gang. New Generation GNSS Augmentation System Based on Generalized Pseudolite[J]. 测绘通报, 2016, 0(2): 1-7.
[1] HARRINGTON R L, DOLLOFF J T. The Inverted Range: GPS User Test Facility[C]//IEEE PLANS'76. San Diego, California: IEEE, 1976: 204-211. [2] WOLF R, THALHAMMER M, HEIN G W. GATE-the German Galileo Test Environment[C]//Proceedings of the ION GNSS. Portland, USA: [s.n.], 2003: 1009-1015. [3] WANG J. Pseudolite Applications in Positioning and Na-vigation: Progress and Problems[J]. Journal of Global Positioning Systems, 2002, 1(1): 48-56. [4] 郭睿, 唐波, 刘利, 等. 伪卫星增强下的北斗系统服务精度仿真分析[J]. 测绘通报, 2014(10): 7-10. [5] RAPINSKI J, CELLMER S, RZEPECKA Z. Pseudolite Signal Tests[J]. Artificial Satellites, 2012, 47(4): 147-153. [6] RAPINSKI J, KOZIAR M, RZEPECKA Z, et al. Some Considerations in Designing a GPS Pseudolite[J]. Artificial Satellites, 2012, 47(1): 1-11. [7] KIM C, SO H, LEE T, et al. A Pseudolite-based Positioning System for Legacy GNSS Receivers[J]. Sensors, 2014, 14(4): 6104-6123. [8] WAN X G, ZHAN X Q. The Research of Multipath and Linear Error for Pseudolites Applications[J]. Applied Mechanics and Materials, 2012, 130-134: 2890-2893. [9] CHEN J Y, LI X B, MIN D X, et al. High Accuracy Reconstruction Platform for GNSS/Pseudolite Hybrid Constellation Simulator[C]//2013 IEEE 11th International Conference on Electronic Measurement Instruments (ICEMI). Harbin: IEEE, 2013: 187-191. [10] HWANG S, YU D H. Clock Synchronization of Pseudolite Using Time Transfer Technique Based on GPS Code Measurement[J]. International Journal of Software Engineering and Its Applications, 2014, 8(4):35-40. [11] WU M K, HUANG J S, XU Y M, et al. Precise Antenna Calibration for Ground-based Pseudolite[M]//RIZOS C, WILLIS P. Earth on the Edge: Science for a Sustainable Planet. Berlin Heidelberg: Springer, 2014: 487-491. [12] SAKAMOTO Y, ARIE H, EBINUMA T, et al. Doppler Positioning with a Movable Receiver Antenna and a Single Pseudolite for Indoor Localization[C]//2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). Budapest: IEEE, 2011: 19-24. [13] DAI L W, WANG J L, TSUJII T, et al. Pseudolite Applications in Positioning and Navigation: Modelling and Geometric Analysis[C]//Int. Symp. on Kinematic Systems in Geodesy, Geomatics & Navigation (KIS2001). Banff, Canada: [s.n.], 2001: 482-489. [14] COLLINS R. Pseudolite GPS Anti-Jamming Systems [J]. Defense Update, 2004. [15] MORLEY T, LACHAPELLE G. Pseudolite Augmentation for OTF Ambiguity Resolution in Shipborne Mode[J]. Journal of Surveying Engineering, 1998, 124(1): 26-39. [16] WHELAN D. iGPS: Integrated Nav & Com Augmentation of GPS[EB/OL]. [2015-09-11]. http://scpnt.stanford.edu/pnt/PNT10/presentation_slides/10-PNT_Symposium_Whelan.pdf. [17] 田世伟, 李广侠, 常江, 等. 基于铱星增强的GPS系统RAIM性能[J]. 解放军理工大学学报(自然科学版), 2013, 14(3): 237-241. [18] TAN H P, DIAMANT R, SEAH W K G, et al. A Survey of Techniques and Challenges in Underwater Localization[J]. Ocean Engineering, 2011,38(14-15): 1663-1676. [19] 王权, 程鹏飞, 章传银, 等. 差分GPS水下立体定位系统[J]. 测绘科学, 2006, 31(5): 18-19. [20] 秘金钟, 章传银, 高星伟, 等. 水下GPS系统的时间同步标定研究与试验[J]. 测绘科学, 2007, 32(3): 36-37. [21] BARTONE C G, KIRAN S. Flight Test Results of an Integrated Wideband Airport Pseudolite for the Local Area Augmentation System[J]. Navigation, 2001, 48(1): 35-48. [22] PERVAN B S, COHEN C E, PARKINSON B W. Inte-grity Monitoring for Precision Approach Using Kinematic GPS and a Ground-based Pseudolite[J]. Navigation, 1994, 41(2): 159-174. [23] WANG J, TSUJII T, RIZOS C, et al. GPS and Pseudo-satellites Integration for Precise Positioning[J]. Geomatics Research Australasia, 2001(74): 103-117. [24] KANG G H, TAN L Y, HUA B, et al. Study on Pseudolite System for BeiDou Based on Dynamic and Independent Aircrafts Configuration[M]//SUN J D, JIAO W H, WU H T, et al. China Satellite Navigation Conference (CSNC) 2013 Proceedings. Berlin Heidelberg: Springer, 2013: 159-172. [25] STONE J M, LEMASTER E A, POWELL J D, et al. GPS Pseudolite Transceivers and Their Applications[C]//Proceedings of the ION National Technical Meeting. San Diego, CA, USA: [s.n.], 1999: 415-424. [26] BARNES J, WANG J, RIZOS C, et al. The Performance of a Pseudolite-based Positioning System for Deformation Monitoring[C]//2nd Symp. on Geodesy for Geotechnical & Structural Applications. Berlin, Germany: [s.n.], 2002: 21-24. [27] 杨光. GPS和伪卫星组合定位技术及其在形变监测中的应用研究[J]. 测绘学报, 2006, 35(4): 410. [28] ZIMMERMAN K R. Experiments in the Use of the Global Positioning System for Space Vehicle Rendezvous[M]. Stanford: Stanford University, 1996. [29] KEE C, JUN H, YUN D, et al. Development of Indoor Navigation System Using Asynchronous Pseudolites[C]//Proceedings of ION GPS. Salt Lake City: [s.n.], 2000: 1038-1045. [30] WANG J L, DAI L W, TSUJII T, et al. GPS/INS/Pseudolite Integration: Concepts, Simulation and Testing[C]//Proceedings of the ION GPS. Salt Lake City: [s.n.], 2001: 2708-2715. [31] GALIJAN R C. Analysis and Simulation of a Candidate Deployment Geometry and Characteristics of Pseudolites with a Tunnel[C]//Proceedings of ION GPS. Kansas City: [s.n.], 1996: 527-533. [32] LIU Y Y, LIAN B W, SONG Y L, et al. Rapid Reacquisition Algorithm with Vector Tracking Loop in Indoor Pseudolite Applications[M]//SUN J D, JIAO W H, WU H T, et al. China Satellite Navigation Conference (CSNC) 2014 Proceedings. Berlin Heidelberg: Springer, 2014: 787-795. [33] 刘洋洋, 廉保旺, 赵宏伟, 等. Kalman滤波辅助的室内伪卫星相对定位算法[J]. 物理学报, 2014, 63(22): 228402. doi: 10.7498/aps.63.228402. [34] 李冬, 焦文海, 马银虎, 等. Locata系统概况及启示[C]//第五届中国卫星导航学术年会论文集. 北京: [s.n.], 2014. [35] RIZOS C. Locata: A Positioning System for Indoor and Outdoor Applications Where GNSS Does Not Work[C]//Proceedings of the 18th APAS. Canberra, Australia: [s.n.], 2013: 73-83. [36] LEMASTER E, ROCK S. Mars Exploration Using Self-calibrating Pseudolite Arrays[C]//Proceedings of the Institute of Navigation GPS-98 Conference. Nashville: [s.n.], 1998: 1967-1974. [37] LEMASTER E A. Self-calibrating Pseudolite Arrays: Theory and Experiment[D]. Stanford: Stanford University, 2002. [38] MATSUOKA M, ROCK S M, BUALAT M G. Autonomous Deployment of a Self-calibrating Pseudolite Array for Mars Rover Navigation[C]//PLANS 2004 Position Location and Navigation Symposium. [S.l.]: IEEE, 2004: 733-739. [39] MIHAELA-SIMONA C, MICHAEL F, SAM P. Galileo E1 and E5a Performance for Multi Frequency and Multi Constellation GBAS[J]. GPS World, 2015(4): 30-35. [40] PARKINSON B W. Assured PNT for Our Future: PTA[J]. GPS World, 2014(9): 24-31. [41] GAUTHIER J P, GLENNON E P, RIZOS C C. Time Transfer Performance of Locata-Initial Results[C]//Proceedings of the 45th Annual Precise Time and Time Interval Systems and Applications Meeting. Bellevue, WA: [s.n.], 2013: 150-157. [42] COBB H S. GPS Pseudolites: Theory, Design, and Applications[D]. Stanford: Stanford University, 1997. [43] KLEIN D, PARKINSON B W. The Use of Pseudo-satellites for Improving GPS Performance[J]. Navigation, 1984, 31(4): 303-315. [44] GALIJAN R C, LUCHA G V. A Suggested Approach for Augmenting GNSS Category III Approaches and Landings: The GPS/GLONASS and GLONASS Pseudolite System[C]//Proceedings of US Institute of Navigation GPS-93. Salt Lake City, Utah: [s.n.], 1993: 157-160. [45] MADHANI P H, AXELRAD P, KRUMVIEDA K, et al. Mitigation of the Near-Far Problem by Successive Interference Cancellation[C]//Proceedings of US Institute of Navigation GPS. Salt Lake City, Utah: [s.n.], 2001: 148-154. [46] PROGRI I F, MICHALSON W R. An Alternative Approach to Multipath and Near-Far Problem for Indoor Geolocation Systems[C]//Proceedings of US Institute of Navigation GPS. Salt Lake City, Utah: [s.n.], 2001: 11-14. [47] SDERHOLM S, JUHOLA T, SAARNIMO T, et al. Indoor Navigation Using a GPS Receiver[C]//Proceedings of US Institute of Navigation GPS. Salt Lake City, Utah: [s.n.], 2001: 1479-1486. [48] PICOIS A, SAMAMA N. Near-far Interference Mitigation for Pseudolites Using Double Transmission[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4): 2929-2941. [49] PROGRI I F. An Assessment of Indoor Geolocation Systems[D]. Worcester, MA: Worcester Polytechnic Institute, 2003. [50] PROGRI I F, MAYNARD J, MICHALSON W R, et al. The Performance and Simulation of a C-CDMA Pseudolite Indoor Geolocation System[C]//Proceedings of Institute of Navigation GNSS. Fort Worth, TX: [s.n.], 2006: 26-29. [51] PROGRI I F, MICHALSON W R, WANG J L, et al. Indoor Geolocation Using FCDMA Pseudolites: Signal Structure and Performance Analysis[J]. Navigation, 2007, 54(3): 241-256. [52] PROGRI I F. On Generalized Multidimensional Geolocation Modulation Waveforms[C]//2012 IEEE/ION Position Location and Navigation Symposium (PLANS). Myrtle Beach, SC: IEEE, 2012: 919-951. [53] WYMEERSCH H, LIEN J, WIN M Z. Cooperative Localization in Wireless Networks[J]. Proceedings of the IEEE, 2009, 97(2): 427-450. [54] FIGUEIRAS J, FRATTASI S. Mobile Positioning and Tracking: From Conventional to Cooperative Techniques[M]. New York: John Wiley & Sons, 2011. |
[1] | JIA Xiuli. GPS multipath effect snow depth estimation by Gaussian process regression-assisted [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 78-82. |
[2] | XI Guangyong, GAO Jun, ZOU Dongyao, SHAO Xiaoya. The modeling of RSSI ranging temperature correction in temperature variation environment [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 83-86. |
[3] | ZHANG Bo, LIU Qiang, XU Guoliang, CAI Renlan, CHENG Feng. Application of GNSS+INS integrated navigation in mine auto-driving trucks [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 143-147. |
[4] | ZHAO Yinzhi, ZOU Jingui, CAI Lixian, HUANG Gege. An ultra wide band indoor positioning method considering electrical delay [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 1-5,31. |
[5] | LIU Zhuo, LI Jia, ZHANG Xiang, GUO Lei, LIU Yanyang, XU Haodong, GU Yunyang, CHEN Chonghua. Obtaining high-precision digital elevation model in Antarctica based on TanDEM-X images and ICESat-2 data [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 72-76. |
[6] | WAN Yingneng, XU Xuehan, LIU Kexian. Integrated navigation algorithm of multi-joint deep-sea vehicle [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 90-95. |
[7] | LUO Youan, JIANG Aiguo, YANG Fuxin, ZHANG Jie, HE Dongxu, XU Yinglong. Application research of BDS precise point positioning on dynamic positioning system of offshore oil drilling rig [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 111-116. |
[8] | XIAO Haowei, WANG Jianglin, GUO Hairong, YANG Liyang. Real-time precise point positioning precision analysis based on PPP-B2b service [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 117-121. |
[9] | GAO Zhiyu, GUO Jinyi, LIU Jie. Application progress of BDS in monitoring crustal deformation [J]. Bulletin of Surveying and Mapping, 2022, 0(3): 32-35. |
[10] | DING Renjun, WANG Youkun, ZHANG Junhua, LIU Chen. Kunming zenith wet delay model based on a backpropagation neural network [J]. Bulletin of Surveying and Mapping, 2022, 0(3): 107-110. |
[11] | QIAN Wenjin, ZHANG Lin, ZHANG Zelie, ZENG Pan, JIANG Ziwei, QU Xiaowen. Assessing the L5 positioning performance of IRNSS and QZSS in their primary service areas: stand-alone and combined with GPS [J]. Bulletin of Surveying and Mapping, 2021, 0(10): 88-93. |
[12] | FENG Zhiqiang, ZHANG Yaodong, HU Danhui, ZHOU Guangyuan, LI Zhaohui, ZHOU Xueming, MAO Xiaopo. Influence analysis of transmission line electromagnetic interference on BDS data quality and accuracy [J]. Bulletin of Surveying and Mapping, 2021, 0(10): 94-97,113. |
[13] | QIAN Wei, YUE Jianping. Application of MSSA in GPS coodinate series analysis [J]. Bulletin of Surveying and Mapping, 2021, 0(9): 49-52,63. |
[14] | ZHANG Shifang, ZHANG Jin. Application of Kalman filter in GNSS monitoring of ground subsidence in Xishan coalfield of Shanxi province [J]. Bulletin of Surveying and Mapping, 2021, 0(9): 103-107. |
[15] | LI Jiangang, LI Honghui, CHAI Xiangjun, WANG Tianyu. Accuracy evaluation of GPS, BDS and GPS+BDS precise point positioning [J]. Bulletin of Surveying and Mapping, 2021, 0(9): 124-129. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||