[1] PAN Z, HEALEY G E, PRASCAD M, et al. Face Recognition in Hyperspectral Images[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition.[S.l.]:IEEE, 2003:334-339. [2] GENDRIN A, MANGOLD N, BIBRING J P, et al. Sulfates in Martian Layered Terrains:the OMEGA/Mars Express View[J]. Science, 2005, 307(5715):1587-1591. [3] SCHULTZ R A, NIELSEN T, ZAVALETA J R, et al. Hyperspectral Imaging:A Novel Approach for Microscopic Analysis[J]. Cytometry Part A, 2001, 43(4):239. [4] VELASCO-FORERO S, ANGULO J. Classification of Hyperspectral Images by Tensor Modeling and Additive Morphological Decomposition[J]. Pattern Recognition, 2013, 46(2):566-577. [5] FARRELL M D, MERSEREAU R M. On the Impact of PCA Dimension Reduction for Hyperspectral Detection of Difficult Targets[J]. IEEE Geoscience & Remote Sensing Letters, 2005, 2(2):192-195. [6] 王志辉, 丁丽霞. 基于叶片高光谱特性分析的树种识别[J]. 光谱学与光谱分析, 2010, 30(7):1825-1829. [7] DALPONTE M, BRUZZONE L, GIANELLE D. Tree Species Classification in the Southern Alps Based on the Fusion of Very High Geometrical Resolution Multispectral/Hyperspectral Images and LiDAR Data[J]. Remote Sensing of Environment, 2012, 123(3):258-270. [8] ROWEIS S T, SAUL L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding.[J]. Science, 2000, 290(5500):2323. [9] TENENBAUM J B, SILVA V D, LANGFORD J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction[J]. Science, 2000, 290(5500):2319. [10] BELKIN M, NIYOGI P. Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering[J]. Advances in Neural Information Processing Systems, 2002, 14(6):585-591. [11] DONOHO D L, GRIMES C. Hessian Eigenmaps:Locally Linear Embedding Techniques for High-Dimensional Data[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(10):5591. [12] ZHANG Zhenyue, ZHA Hongyuan. Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment[J]. Advances in Manu facturing, 2004, 26(4):313-338. [13] 鲁锦涛, 马丽. 基于流形对齐的高光谱遥感图像降维和分类算法[J]. 国土资源遥感, 2017, 29(1):104-109. [14] YAN S, XU D, ZHANG B, et al. Graph Embedding:A General Framework for Dimensionality Reduction[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition.[S.l.]:IEEE, 2005:830-837. [15] ZHANG T, TAO D, LI X, et al. Patch Alignment for Dimensionality Reduction[J]. IEEE Transactions on Knowledge & Data Engineering, 2009, 21(9):1299-1313. [16] SAUL L K, ROWEIS S T. Think Globally, Fit Locally:Unsupervised Learning of Low Dimensional Manifolds[J]. Journal of Machine Learning Research, 2003, 4(2):119-155. |