[1] 田国会,张庆宾,丁娜娜.基于WT-UKF的PDR/GPS组合定位算法[J].控制与决策,2015,30(1):86-90. [2] 李金凤,王庆辉,刘晓梅,等.基于MEMS惯性传感器的行人航位推算系统[J].传感器与微系统,2014,33(12):85-90. [3] 马宏阳,程鹏飞,王潜心.一种改进的UKF算法在捷联惯导初始对准中的应用[J].测绘通报,2015(7):18-22. [4] 门爱东,姜竹青,王宇鹏,等.双重自适应UKF在SINS初始对准中的应用[J].北京邮电大学学报,2014,37(1):11-15. [5] 苏宛新.自适应UKF滤波在SINS初始对准中的应用[J].中国惯性技术学报,2011,19(5):533-536. [6] JIMENEZ A R,SECO F,PRIETO C,et al.A Comparison of Pedestrian Dead-Reckoning Algorithms Using a Low-cost MEMS IMU[C]//The 6th IEEE International Symposium on Intelligent Signal Processing.Budapest:IEEE,2009:37-42. [7] RAUL F,EDUARDO Z,JAIME G.Pedestrian Tracking Using Inertial Sensors[J].Journal of Physical Agents,2009,3(1):35-42. [8] ZHENG X,YANG H,TANG W,et al.Indoor Pedestrian Navigation with Shoe-mounted Inertial Sensors[C]//Multimedia and Ubiquitous Engineering.Berlin:Springer,2014:67-73. [9] FRANCISCO Z,MOHAMMED K,PATRICK R,et al.Unscented Kalman Filter and Magnetic Angular Rate Update (MARU) for an Improved Pedestrian Dead-reckoning[C]//Position Location and Navigation Symposium.[S.l.]:IEEE,2012:129-139. [10] 赵鹤,王喆垚.基于UKF的MEMS传感器姿态测量系统[J].传感技术学报,2011,24(5):642-646. [11] 陈国良,张言哲,汪云甲,等.WiFi-PDR室内组合定位的无迹卡尔曼滤波算法[J].测绘学报,2015,44(12):1314-1321. [12] BORENSTEIN J,OJEDA L,KWANMUANG S.Heuristic Reduction of Gyro Drift in IMU-based Personnel Tracking Systems[J].Journal of Navigation,2009,62(1):41-58. [13] JIMENEZ A R,SECO F,PRIETO J C,et al.Indoor Pedestrian Navigation Using an INS/EKF Framework for Yaw Drift Reduction and a Foot-mounted IMU[C]//Proc.of 7th Workshop on Positioning,Navigation and Communication (WPNC'10).Dresden:[s.n.],2010:1-9. [14] WEINBERG H.Using the ADXL202 in Pedometer and Personal Navigation Applications[EB/OL].[2017-01-02].www.BDTIC.com/ADI. [15] JIMENEZ A R,SECO F,PRIETO C,et al.A Comparison of Pedestrian Dead-reckoning Algorithms Using a Low-cost MEMS IMU[C]//The 6th IEEE International Symposium on Intelligent Signal Processing.Budapest:IEEE,2009:37-42. |