[1] 李德仁, 童庆禧, 李荣兴, 等. 高分辨率对地观测的若干前沿科学问题[J]. 中国科学(地球科学), 2012, 42(6):805-813. [2] 赵理君, 唐娉, 霍连志, 等. 图像场景分类中视觉词包模型方法综述[J]. 中国图象图形学报, 2018, 19(3):333-343. [3] OLIVA A, TORRALBA A. Modeling the shape of the scene:a holistic representation of the spatial envelope[J]. International Journal of Computer Vision, 2001, 42(3):145-175. [4] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110. [5] OKUMURA S, MAEDA N, NAKATA K, et al. Visual categorization method with a bag of PCA packed keypoints[C]//International Congress on Image and Signal Processing.[S.l.]:IEEE, 2011. [6] HU F, XIA G S, HU J W, et al. Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery[J]. Remote Sensing, 2015, 7(11):14680-14707. [7] ZHONG Y F, ZHU Q Q, ZHANG L P. Scene classification based on the multifeature fusion probabilistic topic model for high spatial resolution remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(11):6207-6222. [8] KRIZHEVSKY A, SUTSKEVER I, HINTON G. Imagenet classification with deep convolutional neural networks[C]//NIPS. Lake Tahoe:ACM, 2012. [9] 张敏, 刘利雄, 贾云得. 一种基于图像区域系综分类的室外场景理解方法[J]. 中国图象图形学报, 2018, 9(12):1443-1448. [10] 何小飞, 邹峥嵘, 陶超, 等. 联合显著性和多层卷积神经网络的高分影像场景分类[J]. 测绘学报, 2016, 45(9):1073-1080. [11] 李冠东, 张春菊, 王铭恺, 等. 卷积神经网络迁移的高分影像场景分类学习[BE/OL].[2018-09-03]. http://kns.cnki.net/kcms/detail/11.4415.P.20180412.1032.w2.html. [12] LECUN Y, BENGIO Y, HINTON G. Deep learning.[J]. Nature, 2015(521):436-444. [13] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout:a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1):1929-1958. [14] LIU Q, FURBER S.Noisy Softplus:a biology inspired activation function[C]//Proceedings of International Conference on Neural Information Processing.[S.l.]:Springer International Publishing, 2016. [15] ZHOU L, ZHOU Z T, HU D W. Scene classification using a multi-resolution bag-of-features model[J]. Pattern Recognition, 2013, 46(1):424-433. [16] SERRANO N, SAVAKIS A E, LUO J. Improved scene classification using efficient low-level features and semantic cues[J]. Pattern Recognition, 2004, 37(9):1773-1784. [17] YANG Y, NEWSAM S.Bag-of-visual-words and spatial extensions for land-use classification[C]//Sigspatial International Conference on Advances in Geographic Information Systems. San Jose:ACM,2010. [18] YANG Y, NEWSAM S. Spatial pyramid co-occurrence for image classification[C]//Proceedings of IEEE International Conference on Computer Vision. Barcelona:IEEE, 2011. [19] 徐侃, 陈丽君, 杨文, 等. 利用特征选择的遥感图像场景分类[J]. 哈尔滨工业大学学报, 2011, 43(9):117-121. [20] CHERIYADAT A M. Unsupervised feature learning for aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 52(1):439-451. [21] HU F, XIA G S, HU J W, et al. Fast binary coding for the scene classification of high-resolution remote sensing imagery[J]. Remote Sensing, 2016, 8(7):555-567. [22] ZHONG Y F, FEI F, ZHANG L P. Large patch convolutional neural networks for the scene classification of high spatial resolution imagery[J]. Journal of Applied Remote Sensing, 2016,10(2):025006. |