[1] 姜卫平,刘鸿飞,刘万科,等. 西龙池上水库GPS变形监测系统研究及实现[J].武汉大学学报(信息科学版),2012,37(8):949-952,1009. [2] 黄凯,陈渠森,鞠博晓.GNSS自动化监测系统的大坝变形预测方法研究[J].测绘通报,2018(1):147-150. [3] 辛大鹏,田林亚,沈哲辉.小波分解AR-BP网络模型在大坝垂直位移预测中的应用[J].测绘工程,2015,24(12):53-56. [4] 覃劭峰.基于GM(1,1)-ARIMA最优组合的大坝预测模型[J].测绘通报,2014(S2):66-69. [5] 罗德河,郑东健.大坝变形的小波分析与ARMA预测模型[J].水利水运工程学报,2016(3):70-75. [6] 王新洲,范千,许承权,等.基于小波变换和支持向量机的大坝变形预测[J].武汉大学学报(信息科学版),2008,33(5):469-471. [7] 李世友,王奉伟,沈云中.大坝变形时间序列的奇异谱分析[J].测绘通报,2018(9):64-68. [8] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings A, 1998, 454(1971):903-995. [9] 罗飞雪,戴吾蛟.小波分解与EMD在变形监测应用中的比较[J].大地测量与地球动力学,2010,30(3):137-141. [10] LI Y, XU C, YI L, et al. A data-driven approach for denoising GNSS position time series[J]. Journal of Geodesy, 2018, 92(8):905-922. [11] YANBO N, CHUNBAO X. Analysis of the dynamic characteristics of a suspension bridge based on RTK-GNSS measurement combining EEMD and wavelet packet technique[J]. Measurement Science and Technology, 2018,29(8):085103. [12] DU B, XU W, SONG B, et al. Prediction of chaotic time series of RBF neural network based on particle swarm optimization[J]. Advances in Intelligent Systems and Computing, 2014(298):489-497. [13] 何耀耀,许启发,杨善林,等.基于RBF神经网络分位数回归的电力负荷概率密度预测方法[J].中国电机工程学报,2013,33(1):93-98. [14] 刘述忠.基于GM-RBF神经网络的股票价格预测分析[J].计算机与现代化,2018(8):8-11. [15] RAJI C G, CHANDRA S S V. Prediction and survival analysis of patients after liver transplantation using RBF networks[C]//TAN Ying, SHI Yuhui. Data Mining and Big Data-International Conference on Data Mining and Big Data. Bali, Indonesia:Springer International Publishing, 2016:147-155. |