Bulletin of Surveying and Mapping ›› 2021, Vol. 0 ›› Issue (7): 44-51,58.doi: 10.13474/j.cnki.11-2246.2021.0207
Previous Articles Next Articles
SU Yifan1, DANG Jianwu1,2, WANG Yangping1,2, YANG Jingyu1,2
Received:
2020-08-10
Online:
2021-07-25
Published:
2021-08-04
CLC Number:
SU Yifan, DANG Jianwu, WANG Yangping, YANG Jingyu. Remote sensing image change detection based on improved interval type-2 fuzzy clustering[J]. Bulletin of Surveying and Mapping, 2021, 0(7): 44-51,58.
[1] | TONG G F, YONG L, WEI D, et al. Review of remote sensing image change detection[J]. Journal of Image and Graphics, 2015, 20(12):1561-1571. |
[2] | 宿强, 杨景玉, 王阳萍. 基于直觉模糊C核均值聚类算法的合成孔径雷达图像变化检测[J]. 激光与光电子学进展, 2019, 56(19):270-277. |
[3] | ZHANG X F, WANG G, SU Q T, et al. An improved fuzzy algorithm for image segmentation using peak detection, spatial information and reallocation[J]. Soft Computing, 2017, 21(8):2165-2173. |
[4] | NAYAK J, NAIK B, BEHERA H S. Fuzzy C-means (FCM) clustering algorithm:a decade review from 2000 to 2014[M]//JAIM L C, BEHERA H S, MANDAL J K, et al. Computational intelligence in data mining. New Delhi:Springer, 2015:133-149. |
[5] | MISHRA N S, GHOSH S, GHOSH A. Fuzzy clustering algorithms incorporating local information for change detection in remotely sensed images[J]. Applied Soft Computing, 2012, 12(8):2683-2692. |
[6] | 贺辉, 胡丹, 余先川. 基于自适应区间二型模糊聚类的遥感土地覆盖自动分类[J]. 地球物理学报, 2016, 59(6):1983-1993. |
[7] | GHOSH A, MISHRA N S, GHOSH S. Fuzzy clustering algorithms for unsupervised change detection in remote sensing images[J]. Information Sciences, 2011, 181(4):699-715. |
[8] | MENDEL J M. Computing derivatives in interval type-2 fuzzy logic systems[J]. IEEE Transactions on Fuzzy Systems, 2004, 12(1):84-98. |
[9] | MEMON K H. A histogram approach for determining fuzzifier values of interval type-2 fuzzy C-means[J]. Expert Systems with Applications, 2018, 91:27-35. |
[10] | 陈阳,王大志.基于加权Karnik-Mendel算法的区间二型模糊逻辑系统降型[J]. 控制理论与应用, 2016, 33(10):1327-1336. |
[11] | DANG T H, NGO L T, PEDRYCZ W. Interval Type-2 fuzzy C-means approach to collaborative clustering[C]//IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). Istanbul:IEEE, 2015:1-7. |
[12] | HUANG M, XIA Z K, WANG H B, et al. The range of the value for the fuzzifier of the fuzzy C-means algorithm[J]. Pattern Recognition Letters, 2012, 33(16):2280-2284. |
[13] | 张阿龙, 江刚武, 张一, 等. 自适应区间二型模糊聚类的遥感影像变化检测[J]. 测绘科学技术学报, 2018, 35(4):376-382. |
[14] | 赵涛岩,李平,曹江涛. 二型模糊系统降型算法综述[J]. 西南交通大学学报,2019, 54(2):436-444. |
[15] | YANG X S. Firefly algorithms for multimodal optimization[M]//MATANABEO, ZEUGMANN. International symposium on stochastic algorithms. Berlin, Heidelberg:Springer, 2009:169-178. |
[16] | ARORA S, KAUR R. An escalated convergent firefly algorithm[J/OL]. Journal of King Saud University-Computer and Information Sciences, 2018[2020-08-09]. https://doi.org/10.1016/j.jksuci.2018.10.007. |
[17] | MA L Y, CAO P R. Comparative study of several improved firefly algorithms[C]//IEEE International Conference on Information and Automation (ICIA). Wingbo:IEEE, 2016:910-914. |
[18] | GHATASHEH N, FARIS H, ALJARAH I, et al. Opti-mizing software effort estimation models using firefly algorithm[J]. Journal of Software Engineering and Applications, 2015, 8(3):133-142. |
[19] | 陈晋, 何春阳, 卓莉. 基于变化向量分析(CVA)的土地利用/覆盖变化动态监测(Ⅱ)——变化类型的确定方法[J]. 遥感学报, 2001, 5(5):346-352. |
[20] | ZHANG X F, WANG G, SU Q T, et al. An improved fuzzy algorithm for image segmentation using peak detection, spatial information and reallocation[J]. Soft Computing, 2017, 21(8):2165-2173. |
[21] | ZHAO F, CHEN Y, LIU H Q, et al. Alternate PSO-based adaptive interval type-2 intuitionistic fuzzy C-means clustering algorithm for color image segmentation[J]. IEEE Access, 2019, 7:64028-64039. |
[22] | SONG X Y, ZHAO M, YAN Q F, et al. A high-efficiency adaptive artificial bee colony algorithm using two strategies for continuous optimization[J]. Swarm and Evolutionary Computation, 2019, 50:100549. |
[23] | 杜泽星, 殷进勇, 杨建.基于密集连接网络的遥感图像检测方法[J]. 激光与光电子学进展, 2019, 56(22):210-216. |
[24] | LEI T, JIA X H, ZHANG Y N, et al. Superpixel-based fast fuzzy C-means clustering for color image segmentation[J]. IEEE Transactions on Fuzzy Systems, 2018, 27(9):1753-1766. |
[1] | WANG Yanjun, LIN Yunhao, WANG Shuhan, LI Shaochun, WANG Mengjie. 3D road boundary extraction based on mobile laser scanning point clouds and OSM data [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 18-25. |
[2] | LIU Lin, SUN Yi, LI Wanwu. Detection model construction based on CNN for offshore drilling platform and training algorithm analysis [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 26-32,99. |
[3] | KONG Ruiyao, XIE Tao, MA Ming, KONG Ruilin. Application of CatBoost model in water depth inversion [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 33-37. |
[4] | WEN Yuxiao, Lü Jie, MA Qingxun, ZHANG Peng, XU Ruling. Study on inversion of forest biomass by LiDAR and hyperspectral [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 38-42. |
[5] | JIANG Zelin, DENG Jian, LUAN Haijun, LI Lanhui. Rapid extraction of COVID-19 information based on nighttime light remote sensing: a case study of Beijing [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 43-48. |
[6] | ZHENG Yan, HE Huan, BU Lijing, JIN Xin. Super-resolution reconstruction method based on self-similarity and edge-preserving decomposition [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 54-59. |
[7] | RAN Chongxian, LI Senlei. Tree canopy delineation using UAV multispectral imagery [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 112-117. |
[8] | LIU Li, DONG Xianmin, LIU Juan, WEN Xuehu. A new method of remote sensing interpretation production based on integration of human-machine and intelligence [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 118-123,137. |
[9] | AI Min, JING Hui, TIAN Yudong, GUO Lanqin, PEI Yuanjie. Analysis of land use and coverage change and driving force in Hulan district of Harbin city in recent 20 Years [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 124-128. |
[10] | LIU Yuxian, RUAN Minghao, YAN Zhen. A method for accurate extraction of gated electric towers based on airborne laser point cloud [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 129-133. |
[11] | LIU Guochao, PENG Weiping, YANG Shuihua, HU Zhouwen. Detection and application of urban road disease based on ground penetrating radar+3D measuring endoscope [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 134-137. |
[12] | LIU Xiaoyu, LIU Yang, DU Mingyi, ZHANG Min, JIA Jingjue, YANG Heng. Research on construction and demolition waste stacking point identification based on DeeplabV3+ [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 16-19,43. |
[13] | LI Jiahao, ZHOU Lü, MA Jun, YANG Fei, XIAN Lingxiao. Deformation monitoring and mechanism analysis of urban subway line based on PS-InSAR technology [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 20-25. |
[14] | SHI Yun, SHI Longlong, NIU Minjie, ZHAO Kan. Multi-task automatic identification of loess landslide based on one-stage instance segmentation network [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 26-31. |
[15] | DOU Shiqing, CHEN Zhiyu, XU Yong, ZHENG Hegang, MIAO Linlin, SONG Yingying. Hyperspectral image classification based on multi-feature fusion and dimensionality reduction algorithms [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 32-36,50. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||