Bulletin of Surveying and Mapping ›› 2021, Vol. 0 ›› Issue (9): 1-8.doi: 10.13474/j.cnki.11-2246.2021.0264
GUAN Jingyun1,2, LI Dong1, WANG Yafei1, WANG Xinyun1
Received:
2020-10-20
Revised:
2021-07-16
Online:
2021-09-25
Published:
2021-10-11
CLC Number:
GUAN Jingyun, LI Dong, WANG Yafei, WANG Xinyun. DMSP-OLS and NPP-VIIRS night light image correction in China[J]. Bulletin of Surveying and Mapping, 2021, 0(9): 1-8.
[1] ZHAO M, ZHOU Y, LI X, et al. Building a series of consistent night-time light data (1992-2018) in Southeast Asia by integrating DMSP-OLS and NPP-VIIRS[J]. IEEE Transactions on Geoence and Remote Sensing, 2020, 58(3):1843-1856. [2] 梁丽,边金虎,李爱农,等.中巴经济走廊DMSP/OLS与NPP/VIIRS夜光数据辐射一致性校正[J].遥感学报,2020,24(2):149-160. [3] AMARAL S, MONTEIRO A M V, CÂMARA G, et al. DMSP/OLS night-time light imagery for urban population estimatesin the Brazilian Amazon[J]. International Journal of Remote Sensing, 2006,27(5):855-870. [4] 王明明,王卷乐.基于夜间灯光与土地利用数据的山东省乡镇级人口数据空间化[J].地球信息科学学报,2019,21(5):699-709. [5] 曾冰.基于NPP/VIIRS夜间灯光数据的湘鄂赣省际交界区县域经济空间格局及影响因素[J].地理科学,2020,40(6):900-907. [6] 陈昕,彭建,刘焱序,等.基于DMSP/OLS夜间灯光数据的京津冀地区城市空间扩展与空间关联测度[J].地理研究,2018,37(5):898-909. [7] 林中立,徐涵秋,黄绍霖.基于DMSP/OLS夜间灯光影像的中国东部沿海地区城市扩展动态监测[J].地球信息科学学报,2019,21(7):1074-1085. [8] ZHENG J, WANG G, WANG H. Spatiotemporal measure-ment of regional expansion in Changsha-Zhuzhou-Xiangtan metropolitan Area based on nighttime light data[J]. Journal of Geographic Information System, 2020,12(3):202-220. [9] ELVIDGE C D, SUTTON P C, GHOSH T, et al. A global povertymap derived from satellite data[J]. Computers & Geosciences,2009,35(8):1652-1660. [10] 潘竟虎,赵宏宇,董磊磊.基于DMSP-OLS数据和可持续生计的中国农村多维贫困空间识别[J].生态学报,2018,38(17):1-13. [11] 沈丹,周亮,王培安.基于夜间灯光数据的六盘山连片特困区贫困空间分异特征分析[J].遥感信息,2018,33(4):42-48. [12] 孙贵艳,王胜,肖磊.基于夜间灯光数据的长江上游地区能源消费碳排放及影响因素研究[J].地域研究与开发,2020,39(4):159-162. [13] ZHANG W, CUI Y, WANG J, et al. How does urbaniza-tion affect CO2 emissions of central heating systems in China? An assessment of natural gas transition policy based on nighttime light data[J]. Journal of Cleaner Production, 2020, 276:123188. [14] 赵忠旭,张燕杰,潘影,等.夜间灯光数据支持下西藏人类活动强度变化对生态系统调节服务的影响[J].地球信息科学学报,2020,22(7):1544-1554. [15] 李德仁,李熙.夜光遥感技术在人道主义灾难评估中的应用[J].自然杂志,2018,40(3):169-176. [16] 范俊甫,何惠馨,胡桃英,等.一种叙利亚战争城市破坏程度的评估方法[J].测绘科学,2018,43(9):129-134. [17] 李德仁,李熙.论夜光遥感数据挖掘[J].测绘学报,2015,44(6):591-601. [18] ELVIDGE C D, TUTTLE B T, SUTTON P S, et al. Global distribution and density of constructed impervious surfaces[J].Sensors, 2007,7:1962-1979. [19] ZISKIN D, BAUGH K, HSU F C, et al. Methods used for the 2006 radiance lights[J]. Proceedings of the Asia-Pacific Advanced Network, 2010,30:131-142. [20] HSU F C, BAUGH K E, GHOSH T, et al. DMSP-OLS radiance calibrated nighttime lights time series with intercalibration[J]. Remote Sensing, 2015,7,1855-1876. [21] ZHANG Q L, SCHAAF C, SETO K C. The vegetation adjusted NTL urban index:a new approach to reduce saturation and increase variation in nighttime luminosity[J]. Remote Sensing of Environment, 2013,129:32-41. [22] ELVIDGE C D, ZISKIN D, BAUGH K E, et al. A fifteen year record of global natural gas flaring derived from satellite data[J]. Energies, 2009,2(3):595-622. [23] LIU Z F, HE C Y, ZHANG Q F, et al. Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008[J]. Landscape and Urban Planning, 2012,106(1):62-72. [24] 曹子阳,吴志峰,匡耀求,等.DMSP/OLS夜间灯光影像中国区域的校正及应用[J].地球信息科学学报,2015,17(9):1092-1102. [25] 曹子阳,吴志峰,米素娟,等. DMSP/OLS稳定夜间灯光影像在中国的分类校正方法[J].地球信息科学学报,2020,22(2):246-257. [26] 张佰发,苗长虹,宋雅宁,等.一种DMSP/OLS稳定夜间灯光影像中国区域的校正方法[J].地球信息科学学报,2020,22(8):1679-1691. [27] 吴健生,李双,张曦文.中国DMSP-OLS长时间序列夜间灯光遥感数据饱和校正研究[J].遥感学报,2018,22(4):621-632. [28] 卓莉,张晓帆,郑璟,等.基于EVI指数的DMSP/OLS夜间灯光数据去饱和方法[J].地理学报,2015,70(8):1339-1350. [29] MA J, GUO J, AHMAD S, et al. Constructing a new inter-calibration method for DMSP-OLS and NPP-VIIRS nighttime light[J]. Remote Sensing, 2020, 12(6):1-15. [30] 李雪萍,贡璐.DMSP/OLS和VIIRS/DNB夜间灯光影像的校正及拟合[J].测绘通报,2019(7):138-146. [31] MA T, ZHOU C, PEI T, et al. Responses of Suomi-NPP VIIRS-derived nighttime lights to socioeconomic activity in China's cities[J]. Remote Sensing Letters, 2014, 5(1-3):165-174. [32] SHI K, YU B, HUANG Y, et al. Evaluating the ability of NPP-VIIRS nighttime light data to estimate the gross domestic product and the electric power consumption of China at multiple scales:a comparison with DMSP-OLS data[J]. Remote Sensing, 2014, 6:1705-1724. [33] CAO X, WANG J, CHEN J, et al. Spatialization of electricity consumption of China using saturation-corrected DMSPOLSdata[J]. International Journal of Applied Earth Observation and Geoinformation, 2014,28:193-200. [34] ZHANG Q L, PANDEY B, SETO K C. A robust method to generate a consistent time series from DMSP/OLS nighttime light data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016,54:5821-5831. |
[1] | WANG Yanjun, LIN Yunhao, WANG Shuhan, LI Shaochun, WANG Mengjie. 3D road boundary extraction based on mobile laser scanning point clouds and OSM data [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 18-25. |
[2] | LIU Lin, SUN Yi, LI Wanwu. Detection model construction based on CNN for offshore drilling platform and training algorithm analysis [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 26-32,99. |
[3] | KONG Ruiyao, XIE Tao, MA Ming, KONG Ruilin. Application of CatBoost model in water depth inversion [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 33-37. |
[4] | WEN Yuxiao, Lü Jie, MA Qingxun, ZHANG Peng, XU Ruling. Study on inversion of forest biomass by LiDAR and hyperspectral [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 38-42. |
[5] | JIANG Zelin, DENG Jian, LUAN Haijun, LI Lanhui. Rapid extraction of COVID-19 information based on nighttime light remote sensing: a case study of Beijing [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 43-48. |
[6] | ZHENG Yan, HE Huan, BU Lijing, JIN Xin. Super-resolution reconstruction method based on self-similarity and edge-preserving decomposition [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 54-59. |
[7] | RAN Chongxian, LI Senlei. Tree canopy delineation using UAV multispectral imagery [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 112-117. |
[8] | LIU Li, DONG Xianmin, LIU Juan, WEN Xuehu. A new method of remote sensing interpretation production based on integration of human-machine and intelligence [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 118-123,137. |
[9] | AI Min, JING Hui, TIAN Yudong, GUO Lanqin, PEI Yuanjie. Analysis of land use and coverage change and driving force in Hulan district of Harbin city in recent 20 Years [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 124-128. |
[10] | LIU Yuxian, RUAN Minghao, YAN Zhen. A method for accurate extraction of gated electric towers based on airborne laser point cloud [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 129-133. |
[11] | LIU Guochao, PENG Weiping, YANG Shuihua, HU Zhouwen. Detection and application of urban road disease based on ground penetrating radar+3D measuring endoscope [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 134-137. |
[12] | LIU Xiaoyu, LIU Yang, DU Mingyi, ZHANG Min, JIA Jingjue, YANG Heng. Research on construction and demolition waste stacking point identification based on DeeplabV3+ [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 16-19,43. |
[13] | LI Jiahao, ZHOU Lü, MA Jun, YANG Fei, XIAN Lingxiao. Deformation monitoring and mechanism analysis of urban subway line based on PS-InSAR technology [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 20-25. |
[14] | SHI Yun, SHI Longlong, NIU Minjie, ZHAO Kan. Multi-task automatic identification of loess landslide based on one-stage instance segmentation network [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 26-31. |
[15] | DOU Shiqing, CHEN Zhiyu, XU Yong, ZHENG Hegang, MIAO Linlin, SONG Yingying. Hyperspectral image classification based on multi-feature fusion and dimensionality reduction algorithms [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 32-36,50. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||