[1] LAI Xudong, YANG Jingru, LI Yongxu, et al. A building extraction approach based on the fusion of LiDAR point cloud and elevation map texture features[J]. Remote Sensing, 2019, 11(14):1636. [2] NÆSSET E. Practical large-scale forest stand inventory using a small-footprint airborne scanning laser[J]. Scandinavian Journal of Forest Research, 2004, 19(2):164-179. [3] REUTEBUCH S E, ANDERSEN H E, MCGAUGHEY R J. Light detection and ranging (LIDAR):an emerging tool for multiple resource inventory[J]. Journal of Forestry, 2005, 103(6):286-292. [4] KULAWARDHANA R W, POPESCU S C, FEAGIN R A. Fusion of lidar and multispectral data to quantifysalt marsh carbon stocks[J]. Remote Sensing of Environment, 2014, 154:345-357. [5] VO A V, TRUONG-HONG L, LAEFER D F, et al. Octree-based region growing for point cloud segmentation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 104:88-100. [6] LACH S R, KEREKES J P. Robust extraction of exterior building boundaries from topographic lidar data[C]//IGARSS 2008-2008 IEEE International Geoscience and Remote Sensing Symposium. Boston, MA:IEEE, 2008. [7] RONNEBERGER O, FISCHER P, BROX T. U-net:convolu-tional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015.[S.l.]:Springer, Cham,2015. [8] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[J]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016:770-778. [9] CHARLES R Q, HAO Su, MO Kaichun, et al. PointNet:deep learning on point sets for 3D classification and segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI:IEEE, 2017:77-85. [10] QI C R, YI L, SU H, et al. PointNet++:deep hierarchical feature learning on point sets in a metric space[EB/OL].(2017-06-07)[2021-08-09]. https://arxiv.org/abs/1706.02413. [11] BOULCH A, GUERRY J, LE SAUX B, et al. SnapNet:3D point cloud semantic labeling with 2D deep segmentation networks[J]. Computers & Graphics, 2018, 71:189-198. [12] LI YANGYAN, BU RUI, SUN MINGCHAO, et al. Point CNN[EB/OL]. (2018-11-01)[2020-08-09].https://arxiv.org/abs/1801.07791. [13] AXELSSON P. DEM generation from laser scanner data using adaptive TIN models[J]. International Archives of Photogrammetry and Remote Sensing, 2000, 23(B4):110-117. [14] LONG J, SHELHAMER E, DARRELL T. Fully convolu-tional networks for semantic segmentation[J]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015:3431-3440. [15] ROTTENSTEINER F, SOHN G, GERKE M, et al. Results of the ISPRS benchmark on urban object detection and 3D building reconstruction[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93:256-271. [16] HOFFMAN R, JAIN A K. Segmentation and classifica-tion of range images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, PAMI-9(5):608-620. [17] SHAN Jie, SAMPATH A. Building extraction from LiDAR point clouds based on clustering techniques[M]//Topographic Laser Ranging and Scanning.[S.l.]:CRC Press, 2008:421-444. [18] FILIN S, PFEIFER N. Segmentation of airborne laser scanning data using a slope adaptive neighborhood[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 60(2):71-80. [19] XU Y S, TUTTAS S, HOEGNER L, et al. Geometric primitive extraction from point clouds of construction sites using VGS[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(3):424-428. [20] DONG Z, YANG B S, HU P B, et al. An efficient global energy optimization approach for robust 3D plane segmentation of point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 137:112-133. |