Bulletin of Surveying and Mapping ›› 2022, Vol. 0 ›› Issue (3): 70-75.doi: 10.13474/j.cnki.11-2246.2022.0080
Previous Articles Next Articles
FENG Zhili1, XIAO Feng2, LU Xiaoping1, HAO Bo3, WANG Ruyi3, ZHU Rui3
Received:
2021-03-29
Online:
2022-03-25
Published:
2022-04-01
CLC Number:
FENG Zhili, XIAO Feng, LU Xiaoping, HAO Bo, WANG Ruyi, ZHU Rui. Winter wheat classification method based on feature optimization of random forest[J]. Bulletin of Surveying and Mapping, 2022, 0(3): 70-75.
[1] 王娜,李强子,杜鑫,等.单变量特征选择的苏北地区主要农作物遥感识别[J].遥感学报, 2017, 21(4):519-530. [2] 胡琼,吴文斌,宋茜,等.农作物种植结构遥感提取研究进展[J].中国农业科学, 2015, 48(10):1900-1914. [3] ZHENG Baojuan, MYINT S W, THENKABAIL P S, et al. A support vector machine to identify irrigated crop types using time-series Landsat NDVI data[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 34:103-112. [4] FOERSTER S, KADEN K, FOERSTER M, et al. Crop type mapping using spectral-temporal profiles and phenological information[J]. Computers and Electronics in Agriculture, 2012, 89(3):30-40. [5] 刘吉凯,钟仕全,梁文海.基于多时相Landsat 8 OLI影像的作物种植结构提取[J].遥感技术与应用, 2015, 30(4):775-783. [6] 马超,杨飞,王学成.基于中尺度光谱和时序物候特征提取南方丘陵山区茶园[J].国土资源遥感, 2019, 31(1):141-148. [7] 王文静,张霞,赵银娣,等.综合多特征的Landsat 8时序遥感图像棉花分类方法[J].遥感学报, 2017, 21(1):115-124. [8] 胡琼.基于时序MODIS影像的农作物遥感识别方法研究[D].北京:中国农业科学院, 2018. [9] 陈安旭,李月臣.基于Sentinel-2影像的西南山区不同生长期水稻识别[J].农业工程学报, 2020, 36(7):192-199. [10] 刘杰,刘吉凯,安晶晶,等.基于时序Landsat 8 OLI多特征与随机森林算法的作物精细分类研究[J].干旱地区农业研究, 2020, 38(3):281-288. [11] 王李娟,孔钰如,杨小冬,等.基于特征优选随机森林算法的农耕区土地利用分类[J].农业工程学报, 2020, 36(4):244-250. [12] 杨蕙宇,王征强,白建军,等.基于多特征提取与优选的冬小麦面积提取[J].陕西师范大学学报(自然科学版), 2020, 48(1):40-49. [13] 赵晓晴,王萍,荆林海,等.时序Sentinel-2A影像光谱特征的茶园提取应用[J].测绘科学, 2020, 45(6):80-88. [14] 靳宁,张东彦,李振海,等.基于多光谱卫星模拟波段反射率的冬小麦水分状况评估[J].农业机械学报, 2020, 51(11):243-252. [15] 张莹.基于多季相Landsat-8 OLI影像的多特征森林植被分类[D].北京:北京林业大学, 2018. [16] 史蕾.面向对象的高分辨率遥感影像特征选择与分类研究[D].武汉:武汉大学, 2018. [17] 张磊,宫兆宁,王启为,等. Sentinel-2影像多特征优选的黄河三角洲湿地信息提取[J].遥感学报, 2019, 23(2):313-326. [18] RODRIGUEZ-GALIANO V F, GHIMIRE B, ROGAN J, et al. An assessment of the effectiveness of a random forest classifier for land-cover classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 67:93-104. [19] 王猛,张新长,王家耀,等.结合随机森林面向对象的森林资源分类[J].测绘学报, 2020, 49(2):235-244. [20] FRAIWAN L, LWEESY K, KHASAWNEH N, et al. Automated sleep stage identification system based on time-frequency analysis of a single EEG channel and random forest classifier[J]. Computer Methods and Programs in Biomedicine, 2012, 108(1):10-19. [21] 侯蒙京,殷建鹏,葛静,等.基于随机森林的高寒湿地地区土地覆盖遥感分类方法[J].农业机械学报, 2020, 51(7):220-227. [22] 张良均,谭立云,刘名军. Python数据分析与挖掘实战[M]. 2版.北京:机械工业出版社, 2020. [23] EDELMANN D, MÓRI T F, SZÉKELY G J. On relationships between the Pearson and the distance correlation coefficients[J]. Statistics&Probability Letters, 2021, 169:108960. |
[1] | WANG Yanjun, LIN Yunhao, WANG Shuhan, LI Shaochun, WANG Mengjie. 3D road boundary extraction based on mobile laser scanning point clouds and OSM data [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 18-25. |
[2] | LIU Lin, SUN Yi, LI Wanwu. Detection model construction based on CNN for offshore drilling platform and training algorithm analysis [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 26-32,99. |
[3] | KONG Ruiyao, XIE Tao, MA Ming, KONG Ruilin. Application of CatBoost model in water depth inversion [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 33-37. |
[4] | WEN Yuxiao, Lü Jie, MA Qingxun, ZHANG Peng, XU Ruling. Study on inversion of forest biomass by LiDAR and hyperspectral [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 38-42. |
[5] | JIANG Zelin, DENG Jian, LUAN Haijun, LI Lanhui. Rapid extraction of COVID-19 information based on nighttime light remote sensing: a case study of Beijing [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 43-48. |
[6] | ZHENG Yan, HE Huan, BU Lijing, JIN Xin. Super-resolution reconstruction method based on self-similarity and edge-preserving decomposition [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 54-59. |
[7] | RAN Chongxian, LI Senlei. Tree canopy delineation using UAV multispectral imagery [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 112-117. |
[8] | LIU Li, DONG Xianmin, LIU Juan, WEN Xuehu. A new method of remote sensing interpretation production based on integration of human-machine and intelligence [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 118-123,137. |
[9] | AI Min, JING Hui, TIAN Yudong, GUO Lanqin, PEI Yuanjie. Analysis of land use and coverage change and driving force in Hulan district of Harbin city in recent 20 Years [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 124-128. |
[10] | LIU Yuxian, RUAN Minghao, YAN Zhen. A method for accurate extraction of gated electric towers based on airborne laser point cloud [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 129-133. |
[11] | LIU Guochao, PENG Weiping, YANG Shuihua, HU Zhouwen. Detection and application of urban road disease based on ground penetrating radar+3D measuring endoscope [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 134-137. |
[12] | LIU Xiaoyu, LIU Yang, DU Mingyi, ZHANG Min, JIA Jingjue, YANG Heng. Research on construction and demolition waste stacking point identification based on DeeplabV3+ [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 16-19,43. |
[13] | LI Jiahao, ZHOU Lü, MA Jun, YANG Fei, XIAN Lingxiao. Deformation monitoring and mechanism analysis of urban subway line based on PS-InSAR technology [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 20-25. |
[14] | SHI Yun, SHI Longlong, NIU Minjie, ZHAO Kan. Multi-task automatic identification of loess landslide based on one-stage instance segmentation network [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 26-31. |
[15] | DOU Shiqing, CHEN Zhiyu, XU Yong, ZHENG Hegang, MIAO Linlin, SONG Yingying. Hyperspectral image classification based on multi-feature fusion and dimensionality reduction algorithms [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 32-36,50. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||