[1] 丁继新, 尚彦军, 杨志法, 等.降雨型滑坡预报新方法[J].岩石力学与工程学报, 2004, 23(21):3738-3743. [2] 李振洪, 宋闯, 余琛, 等. 卫星雷达遥感在滑坡灾害探测和监测中的应用:挑战与对策[J]. 武汉大学学报(信息科学版), 2019, 44(7):967-979. [3] 廖明生, 董杰, 李梦华, 等. 雷达遥感滑坡隐患识别与形变监测[J]. 遥感学报, 2021, 25(1):332-341. [4] 李晓恩, 周亮, 苏奋振, 等. InSAR技术在滑坡灾害中的应用研究进展[J]. 遥感学报, 2021, 25(2):614-629. [5] DAI Keren, XU Qiang, LI Zhenhong, et al. Post-disaster assessment of 2017 catastrophic Xinmo landslide (China) by spaceborne SAR interferometry[J]. Landslides, 2019, 16(6):1189-1199. [6] 朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017, 46(10):1717-1733. [7] 张路, 廖明生, 董杰, 等. 基于时间序列InSAR分析的西部山区滑坡灾害隐患早期识别——以四川丹巴为例[J]. 武汉大学学报(信息科学版), 2018, 43(12):2039-2049. [8] TOFANI V, SEGONI S, AGOSTINI A, et al. Technical note:use of remote sensing for landslide studies in Europe[J]. Natural Hazards and Earth System Sciences, 2013, 13(2):299-309. [9] CAI Zhenglong, XU Weiya, MENG Yongdong, et al. Prediction of landslide displacement based on GA-LSSVM with multiple factors[J]. Bulletin of Engineering Geology and the Environment, 2016, 75(2):637-646. [10] 杨背背, 殷坤龙, 杜娟. 基于时间序列与长短时记忆网络的滑坡位移动态预测模型[J]. 岩石力学与工程学报, 2018, 37(10):2334-2343. [11] 冯非凡, 武雪玲, 牛瑞卿, 等. 一种V/S和LSTM结合的滑坡变形分析方法[J]. 武汉大学学报(信息科学版), 2019, 44(5):784-790. [12] 张俊, 殷坤龙, 王佳佳, 等. 基于时间序列与PSO-SVR耦合模型的白水河滑坡位移预测研究[J]. 岩石力学与工程学报, 2015, 34(2):382-391. [13] 蒋平. 基于回归神经网络的滑坡位移时间序列预测研究[D]. 武汉:华中科技大学, 2017. [14] 刘青豪, 张永红, 邓敏, 等. 大范围地表沉降时序深度学习预测法[J]. 测绘学报, 2021, 50(3):396-404. [15] 岳振华, 沈涛, 毛曦, 等. 循环神经网络的地面沉降预测方法[J]. 测绘科学, 2020, 45(12):145-152. [16] BERARDINO P, FORNARO G, LANARI R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383. [17] 杨丽, 吴雨茜, 王俊丽, 等. 循环神经网络研究综述[J]. 计算机应用, 2018, 38(S2):1-6. [18] 王增平, 赵兵, 纪维佳, 等. 基于GRU-NN模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43(5):53-58. [19] 史绪国, 徐金虎, 蒋厚军, 等. 时序InSAR技术三峡库区藕塘滑坡稳定性监测与状态更新[J]. 地球科学, 2019, 44(12):4284-4292. |