[1] 薛亚东,高健,李宜城,等.基于深度学习的地铁隧道衬砌病害检测模型优化[J].湖南大学学报(自然科学版),2020,47(7): 137-146. [2] 路耀邦,刘永胜,樊晓东.地铁隧道结构表观病害快速检测方法与应用[J].隧道建设(中英文),2021,41(S2):655-663. [3] 刘德军,仲飞,黄宏伟,等.运营隧道衬砌病害诊治的现状与发展[J].中国公路学报,2021,34(11): 178-199. [4] 史玉峰,张俊,张迎亚.基于地面三维激光扫描技术的隧道安全监测[J].东南大学学报(自然科学版),2013,43(S2):246-249. [5] MUDULIi P R,PATI U C.A novel technique for wall crack detection using image fusion[C]//Proceedings of 2013 International Conference on Computer Communication and Informatics.Coibatore:IEEE,2013. [6] IYER S,SINHA S K,TITTMANN B R,et al.Ultrasonic signal processing methods for detection of defects in concrete pipes[J].Automation in Construction,2012,22:135-148. [7] CHA Y J,CHOI W,BüYüKÖZTÖRK O.Deep learning-based crack damage detection using convolutional neural networks[J].Computer-Aided Civil and Infrastructure Engineering,2017,32(5): 361-378. [8] XUE Y,LI Y.A fast detection method via region-based fully convolutional neural networks for shield tunnel lining defects[J].Computer-Aided Civil and Infrastructure Engineering,2018,33(8): 638-654. [9] 黄宏伟,李庆桐.基于深度学习的盾构隧道渗漏水病害图像识别[J].岩石力学与工程学报,2017,36(12): 2861-2871. [10] 柴雪松,朱兴永,李健超,等.基于深度卷积神经网络的隧道衬砌裂缝识别算法[J].铁道建筑,2018,58(6): 60-65. [11] ZHOU Z,ZHANG J,GONG C.Automatic detection method of tunnel lining multi-defects via an enhanced You Only Look Once network[J].Computer-Aided Civil and Infrastructure Engineering,2022,37(6): 762-780. [12] 杨锋,丁之桐,邢蒙蒙,等.深度学习的目标检测算法改进综述[J].计算机工程与应用,2023,59(11): 1-15. [13] ZHOU Z,ZHANG J,GONG C,et al.Automatic tunnel lining crack detection via deep learning with generative adversarial network-based data augmentationt[J].Underground Space,2023,9(1):140-154. [14] CARION N,MASSA F,SYNNAEVE G,et al.End-to-end object detection with transformers[C]//Proceedings of the 16th European Conference Computer Vision.Glasgow:Springer International Publishing,2020: 213-229. [15] TERVEN J,CORDOVA-ESPARZA D.A comprehensive review of YOLO: from YOLOv1 to YOLOv8 and beyond[J/OL].arXiv.[2024-02-19].https://doi.org/10.48550/arXiv.2304.00501. [16] PAN X,GE C,LU R,et al.On the integration of self-attention and convolution[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Orleans:IEEE,2022: 815-825. [17] ZHENG Z,WANG P,REN D,et al.Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J].IEEE Transactions on Cybernetics,2021,52(8): 8574-8586. [18] ZHENG Z,WWANG P,LIU W,et al.Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of 2020 AAAI Conference on Artificial Intelligence.2020: 12993-13000. [19] GEVORGYAN Z.SIoU loss: more powerful learning for bounding box regression[J/OL].arXiv.[2024-02-19].https://doi.org/10.48550/arXiv.2205.12740. [20] CRAIG J C.A confusion matrix for tactually presented letters[J].Perception & Psychophysics,1979.26(5): 409-411. |