[1] 周燕,蒲磊,林良熙,等.激光点云的三维目标检测研究进展[J].计算机科学与探索,2022,16(12):2695-2717. [2] DING M Y,HUO Y Q,YI H W,et al. Learning depth-guided convolutions for monocular 3D object detection[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle:IEEE,2020:11669-11678. [3] MA X Z,WANG Z H,LI H J,et al. Accurate monocular 3D object detection via color-embedded 3D reconstruction for autonomous driving[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul:IEEE,2019:6850-6859. [4] WANG L,DU L,YE X Q,et al. Depth-conditioned dynamic message propagation for monocular 3D object detection[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville:IEEE,2021:454-463. [5] MA X,LIU S,XIA Z,et al. Rethinking pseudo-lidar representation[C]//Proceedings of 2020 European Conference on Computer Vision.Glasgow:Springer Science and Business Media Deutschland GmbH,2020:311-327. [6] CHARLES R Q,HAO S,MO K C,et al. PointNet:deep learning on point sets for 3D classification and segmentation[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Honolulu:IEEE,2017:77-85. [7] QI C R,YI L,SU H,et al.PointNet++:Deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of 2017 Advances in Neural Information Processing Systems.Long Beach:NIPS,2017:5099-5108. [8] LI Y Y,BU R,SUN M C,et al. PointCNN:convolution on X-transformed points[C] //Proceedings of 2018 Advances in Neural Information Processing Systems.Montreal:NIPS,2018:820-830. [9] LIU H J,DU J X,ZHANG Y,et al. Extracting geometric and semantic point cloud features with gateway attention for accurate 3D object detection[J]. Engineering Applications of Artificial Intelligence,2023,123:106227. [10] ZHOU Y,TUZEL O. VoxelNet:end-to-end learning for point cloud based 3D object detection[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake city:IEEE,2018:4490-4499. [11] YAN Y,MAO Y X,LI B. SECOND:sparsely embedded convolutional detection[J].Sensors,2018,18(10):3337-3354. [12] 黄远宪,李必军,黄琦,等.融合相机与激光雷达的目标检测、跟踪与预测[J/OL].武汉大学学报(信息科学版):1-8[2023-02-26].https://doi.org/10.13203/j.whugis20210614. [13] CHEN X Z,MA H M,WAN J,et al. Multi-view 3D object detection network for autonomous driving[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu:IEEE,2017:6526-6534. [14] KU J,MOZIFIAN M,LEE J,et al. Joint 3D proposal generation and object detection from view aggregation[C]//Proceedings of 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Madrid:IEEE,2018:1-8. [15] QI C R,LIU W,WU C X,et al. Frustum PointNets for 3D object detection from RGB-D data[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake city:IEEE,2018:918-927. [16] ZHU Y J,XIE J M,LIU M Y,et al. BF3D:bi-directional fusion 3D detector with semantic sampling and geometric mapping[J]. Image and Vision Computing,2023,139:104835. [17] TAO B,YAN F W,YIN Z S,et al. A multimodal 3-D detector with attention from the corresponding modal[J]. IEEE Sensors Journal,2023,23(8):8581-8590. [18] WANG Z X,JIA K. Frustum ConvNet:sliding Frustums to aggregate local point-wise features for amodal 3D object detection[C]//Proceedings of 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Macau:IEEE,2019:1742-1749. [19] VORA S,LANG A H,HELOU B,et al. PointPainting:sequential fusion for 3D object detection[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle:IEEE,2020:4603-4611. [20] 肖进胜,赵陶,周剑,等.基于上下文增强和特征提纯的小目标检测网络[J].计算机研究与发展,2023,60(2):465-474. [21] WOO S,PARK J,LEE J Y,et al. CBAM:convolutional block attention module[M]//Lecture Notes in Computer Science. Cham:Springer International Publishing,2018:3-19. |