[1] 廖江海.隧道表观病害快速检测方法研究[D].深圳:深圳大学,2020. [2] NINA W,CONDORI W,MACHACA V,et al,Small ship detection on optical satellite imagery with YOLO and YOLT [C]//Proceedings of 2020 Future of Information and Communication Conference.[S.l]:Advances in Information and Communication,2020: 664-677. [3] SHERMEYER J,VAN ETTEN A.The effects of super-resolution on object detection performance in satellite imagery[EB/OL].[2024-06-10].https://arxiv.org/abs/1812.04098v3. [4] MOSTOFA M,FERDOUS S N,RIGGAN B S,et al.Joint-SRVDNet: joint super resolution and vehicle detection network[J].IEEE Access,2020,8: 82306-82319. [5] KANG M S,AN Y K.Frequency-wave number analysis of deep learning-based super resolution 3D GPR images[J].Remote Sensing,2020,12(18): 3056. [6] XIANG Chao,WANG Wei,DENG Lu,et al. Crack detection algorithm for concrete structures based on super-resolution reconstruction and segmentation network[J]. Automation in Construction,2022,140: 104346. [7] BAE H,JANG K,AN Y K. Deep super resolution crack network (SrcNet) for improving computer vision-based automated crack detectability in in situ bridges[J]. Structural Health Monitoring,2021,20(4): 1428-1442. [8] 方留杨,刘天逸,赵鑫,等.基于增强生成对抗网络的滑坡影像集超分辨率重建[J].测绘通报,2023(1):45-51. [9] 朱代先,齐蜻蜓,车路行,等. 基于亚像素级的墙面裂缝宽度检测方法研究[J]. 电子测量技术,2023,46(6): 166-172. [10] RAMACHANDRAN P,ZOPH B,LE Q V. Searching for activation functions[EB/OL]. [2024-12-01]. https://arxiv.org/abs/1710.05941v2. [11] LIU Yahui,YAO Jian,LU Xiaohu,et al. DeepCrack: a deep hierarchical feature learning architecture for crack segmentation[J]. Neurocomputing,2019,338: 139-153. [12] MAGUIRE M,DORAFSHAN S,TOMAS R J,“SDNET2018: a concrete crack image dataset for machine learning applications,” [J]Data Brief,2018,21: 1664-1668. [13] 孙瑞猛,刘伟,喻东晓,等. 基于图像特征转换和级联分类器的混凝土表面裂缝快速识别方法[J]. 工程建设与设计,2023(21): 135-138. [14] MORGENTHAL G,HALLERMANN N. Quality assessment of unmanned aerial vehicle (UAV) based visual inspection of structures[J]. Advances in Structural Engineering,2014,17(3): 289-302. [15] 任海洋.基于域自适应的异源SAR图像目标识别[D].西安:西安电子科技大学,2022. [16] 柴志鹏.基于全卷积网络的复杂场景图像语义分割方法研究[D].天津:天津工业大学,2022. |