[1] 欧阳权, 孙令司, 武新军.桥梁主缆断丝漏磁检测系统研制[J].科学技术与工程, 2023, 23(32):13827-13833. [2] LI Xinke, GAO Chao, GUO Yongcai, et al.Cable surface damage detection in cable-stayed bridges using optical techniques and image mosaicking[J].Optics & Laser Technology, 2019, 110:36-43. [3] LONG Xinghang, GUI Xulan, ZHAN Weiwei.Surface defect detection method of high speed railway bridge cables based on optical fiber sensing technology[C]//Proceedings of 2020 IEEE International Conference on Industrial Application of Artificial Intelligence.Harbin:IEEE, 2020:549-554. [4] VASWANI A, SHAZEER N, PARMAR N, et al.Attention is all you need[C]//Proceedings of the 31st Conference on Neural Information Processing Systems(NIPS 2017), Long Beach:ACM Press, 2017. [5] RADFORD A, KIM J W, HALLACY C, et al.Learning transferable visual models from natural language supervision[EB/OL].[2025-02-10].https://arxiv.org/abs/2103.00020v1. [6] BAO Hangbo, DONG Li, PIAO Songhao, et al.BEiT:BERT pre-training of image transformers[EB/OL].[2025-02-10].https://arxiv.org/abs/2106.08254v2. [7] KIRILLOV A, MINTUN E, RAVI N, et al.Segment anything[C]//Proceedings of 2023 IEEE/CVF International Conference on Computer Vision.Paris:IEEE, 2023:3992-4003. [9] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al.An image is worth 16×16 words:transformers for image recognition at scale[EB/OL].2021-04-03[2025-02-09].https://arxiv.org/abs/2010.11929. [10] ZHANG Chaoning, HAN Dongshen, QIAO Yu, et al.Faster segment anything:towards lightweight SAM for mobile applications[EB/OL].[2025-02-09].https://arxiv.org/abs/2306.14289v2. [11] POTH C, STERZ H, PAUL I, et al.Adapters:a unified library for parameter-efficient and modular transfer learning[C]//Proceedings of 2023 Conference on Empirical Methods in Natural Language Processing:System Demonstrations.Stroudsburg, PA:ACL, 2023:149-160. [12] XU Fengyu, SHEN Jingjin, JIANG Guoping.Kinematic and dynamic analysis of a cable-climbing robot[J].International Journal of Advanced Robotic Systems, 2015, 12(7):99. [13] XU Fengyu, DAI Suya, JIANG Quansheng, et al.Developing a climbing robot for repairing cables of cable-stayed bridges[J].Automation in Construction, 2021, 129:103807. [14] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al.Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas, NV:IEEE, 2016:770-778. [15] SANDLER M, HOWARD A, ZHU Menglong, et al.MobileNetV2:inverted residuals and linear bottlenecks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE, 2018:4510-4520. |