| [1] [ASGARIMEHR M,WICKERT J,REICH S. TDS-1 GNSS reflectometry:development and validation of forward scattering winds[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2018,11(11):4534-4541.
[2] RUF C S,ATLAS R,CHANG P S,et al. New ocean winds satellite mission to probe hurricanes and tropical convection[J]. Bulletin of the American Meteorological Society,2016,97(3):385-395.
[3] JING Cheng,NIU Xinliang,DUAN Chongdi,et al. Sea surface wind speed retrieval from the first Chinese GNSS-R mission:technique and preliminary results[J]. Remote Sensing,2019,11(24):3013.
[4] YANG Guanglin,BAI Weihua,WANG Jinsong,et al. FY3E GNOS Ⅱ GNSS reflectometry:mission review and first results[J]. Remote Sensing,2022,14(4):988.
[5] HUANG Feixiong,SUN Yueqiang,XIA Junming,et al. Progress on the GNSS-R product from Fengyun-3 missions[C] //Proceedings of 2024 IGARSS IEEE International Geoscience and Remote Sensing Symposium.Athens,Greece:IEEE, 2024:6717-6720.
[6] HUANG Feixiong,XIA Junming,YIN Cong,et al. Assessment of FY-3E GNOS-II GNSS-R global wind product[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2022,15:7899-7912.
[7] YIN Cong,XIA Junming,HUANG Feixiong,et al. Sea ice detection with FY3E GNOS II GNSS reflectometry[C] //Proceedings of 2021 IEEE Specialist Meeting on Reflectometry Using GNSS and Other Signals of Opportunity (GNSS+R). Beijing:IEEE,2021:36-38.
[8] XIE Yunjian,YAN Qingyun. Stand-alone retrieval of sea ice thickness from FY-3E GNOS-R data[J]. IEEE Geoscience and Remote Sensing Letters,2024,21:1-5.
[9] PENG Qin,JIN Shuanggen. Significant wave height estimation from space-borne cyclone-GNSS reflectometry[J]. Remote Sensing,2019,11(5):584.
[10] YANG Shuai,JIN Shuanggen,JIA Yan,et al. Significant wave height estimation from joint CYGNSS DDMA and LES observations[J]. Sensors,2021,21(18):6123.
[11] BU Jinwei,YU Kegen. A new integrated method of CYGNSS DDMA and LES measurements for significant wave height estimation[J]. IEEE Geoscience and Remote Sensing Letters,2022,19:1-5.
[12] 布金伟,余科根,韩帅. 星载GNSS-R海浪有效波高反演模型构建[J]. 测绘学报,2022,51(9):1920-1930.
[13] MAHESHWARI M,KUMAR A,CHAKRABORTY A,et al. Application of the neural network on the GNSS-reflectometry data for the estimation of the significant wave height[C] //Proceedings of 2022 URSI Regional Conference on Radio Science (USRI-RCRS). Indore:IEEE,2022:1-4.
[14] 张云,肖盛,姜丽菲,等. 基于多变量机器学习的CYGNSS有效波高反演模型[J]. 北京航空航天大学学报,2023,51(5):1503-1513.
[15] WANG Feng,YANG Dongkai,YANG Lei. Retrieval and assessment of significant wave height from CYGNSS mission using neural network[J]. Remote Sensing,2022,14(15):3666.
[16] CAI Min,CHENG Xing,HE Shanbao,et al. A deep neural networks-based significant wave height inversion method for GNSS-R signals[C] //Proceedings of 2024 International Conference on Neural Networks,Information and Communication (NNICE). Guangzhou:IEEE,2024:1208-1211.
[17] BU Jinwei,YU Kegen,NI Jun,et al. Combining ERA5 data and CYGNSS observations for the joint retrieval of global significant wave height of ocean swell and wind wave:a deep convolutional neural network approach[J]. Journal of Geodesy,2023,97(8):81.
[18] BU Jinwei,WANG Qiulan,NI Jun. Estimating sea surface swell height using a hybrid model combining CNN,ConvLSTM,and FCN based on spaceborne GNSS-R data from the CYGNSS mission[J]. GPS Solutions,2024,28(3):133. [19][BU Jinwei,WANG Qiulan,LIU Xinyu,et al. Ocean swell height estimation from spaceborne GNSS-R data using tree model based machine learning methods[C] //Proceedings of 2024 IEEE/OES Thirteenth Current,Waves and Turbulence Measurement (CWTM). Wanchese:IEEE,2024:1-5.
[20] GRUBER A,DORIGO W A,CROW W,et al. Triple collocation-based merging of satellite soil moisture retrievals[J]. IEEE Transactions on Geoscience and Remote Sensing,2017,55(12):6780-6792.
[21] 刘帅,林文明,鲁云飞. CYGNSS海面风速固有误差与时空分布特征[J]. 空间科学学报,2022,42(5):1029-1037. |