[1] 许强,陆会燕,李为乐,等.滑坡隐患类型与对应识别方法[J].武汉大学学报(信息科学版),2022,47(3): 377-387. [2] 翁铭锴,肖桂荣.训练样本采样优化与机器学习结合的滑坡易发性评价方法[J].地球信息科学学报,2025,27(5): 1113-1128. [3] 朱阿兴,裴韬,乔建平,等.基于专家知识的滑坡危险性模糊评估方法[J].地理科学进展,2006,25(4): 1-12,137. [4] REICHENBACH P,ROSSI M,MALAMUD B D,et al.A review of statistically-based landslide susceptibility models[J].Earth-Science Reviews,2018,180: 60-91. [5] ACHU A L,AJU C D,DI NAPOLI M,et al.Machine-learning based landslide susceptibility modelling with emphasis on uncertainty analysis[J].Geoscience Frontiers,2023,14(6): 101657. [6] 宋雨洋,郝利娜,严丽华,等.支持向量机在滑坡识别中的应用[J].兰州大学学报(自然科学版),2022,58(6): 727-734. [7] FREITAS D,LOPES L G,MORGADO-DIAS F.Particle swarm optimisation: a historical review up to the current developments[J].Entropy,2020,22(3): 362. [8] ZHAO Shuai,ZHAO Zhou.A comparative study of landslide susceptibility mapping using SVM and PSO-SVM models based on grid and slope units[J].Mathematical Problems in Engineering,2021,2021(1): 8854606. [9] KONG Chunfang,TIAN Yiping,MA Xiaogang,et al.Landslide susceptibility assessment based on different MaChine learning methods in Zhaoping County of eastern Guangxi[J].Remote Sensing,2021,13(18): 3573. [10] OSMANO㊣LU B,SUNAR F,WDOWINSKI S,et al.Time series analysis of InSAR data: methods and trends[J].ISPRS Journal of Photogrammetry and Remote Sensing,2016,115: 90-102. [11] 郭瑞,李素敏,陈娅男,等.基于SBAS-InSAR的矿区采空区潜在滑坡综合识别方法[J].地球信息科学学报,2019,21(7): 1109-1120. [12] 张诗茄,蒋建军,缪亚敏,等.基于SBAS技术的岷江流域潜在滑坡识别[J].山地学报,2018,36(1): 91-97. [13] 黄小龙,吴中海,吴坤罡.滇西北弥渡地区主要断裂晚新生代发育特征及其动力学机制[J].地质力学学报,2021,27(6): 913-927. [14] BERARDINO P,FORNARO G,LANAR㊣I R,et al.A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(11): 2375-2383. [15] CASU F,MANZO M,LANARI R.A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data[J].Remote Sensing of Environment,2006,102(3/4): 195-210. [16] YU Haihua,CAI Guolin,GAN Quan,et al.Early identification of the jiangdingya landslide of Zhouqu based on SBAS-InSAR technology[J].Earthquake Research in China,2020,34(4): 510-522. [17] 郭乐萍,岳建平,岳顺.基于SARscape的InSAR数据相位解缠方法研究[J].地理空间信息,2018,16(3): 20-22,8. [18] 安雪莲,密长林,孙德亮,等.基于不同评价单元的三峡库区滑坡易发性对比: 以重庆市云阳县为例[J].吉林大学学报(地球科学版),2024,54(5): 1629-1644. [19] 周定义,左小清,喜文飞,等.联合SBAS-InSAR和PSO-BP算法的高山峡谷区地质灾害危险性评价[J].农业工程学报,2021,37(23): 108-116. [20] 喜文飞,成鑫,杨志全,等.基于SBAS-InSAR技术和BP神经网络的高位远程滑坡危险性分析研究[J].昆明理工大学学报(自然科学版),2024,49(3):65-74. [21] 薛凯凯,熊礼阳,祝士杰,等.基于DEM的黄土崾岘提取及其地形特征分析[J].地球信息科学学报,2018,20(12): 1710-1720. [22] CORTES C,VAPNIK V.Support-vector networks[J].Machine Learning,1995,20(3): 273-297. [23] SEYDI S T,KANANI-SADAT Y,HASANLOU M,et al.Comparison of machine learning algorithms for flood susceptibility mapping[J].Remote Sensing,2023,15(1): 192. [24] 武雪玲,沈少青,牛瑞卿.GIS支持下应用PSO-SVM模型预测滑坡易发性[J].武汉大学学报(信息科学版),2016,41(5): 665-671. [25] 张雪,魏云杰,杨成生,等.云南昭通地区滑坡隐患InSAR广域识别与监测[J].地球科学与环境学报,2025,47(1): 128-142. [26] 陈兴珍,蒋楠,周家文.基于时序InSAR的理县清流村滑坡二维变形特征与影响因素研究[J].水利水电技术(中英文),2024,55(8): 127-140. [27] 万灿.结合SBAS-InSAR与机器学习的滑坡易发性评价[D].重庆: 重庆交通大学,2023. [28] HE Yi,WANG Wenhui,ZHANG Lifeng,et al.An identification method of potential landslide zones using InSAR data and landslide susceptibility[J].Geomatics,Natural Hazards and Risk,2023,14(1):2185120. [29] 孙焱焱,朱纪朋,郭国,等.考虑InSAR形变速率的区域滑坡易发性评价[J].自然灾害学报,2024,33(3): 178-190. [30] 肖波,赵良军,郑莉萍,等.融合时序InSAR与多因子耦合模型的长宁县滑坡灾害易发性评价[J].自然灾害学报,2025,34(1): 117-126. |