[1] 周宏春,李长征,周春.我国能源领域科学低碳转型研究与思考[J].中国煤炭,2022,48(1):2-9. [2] 刘辉.西部黄土沟壑区采动地裂缝发育规律及治理技术研究[D].徐州:中国矿业大学,2014. [3] 彭苏萍,毕银丽.黄河流域煤矿区生态环境修复关键技术与战略思考[J].煤炭学报,2020,45(4):1211-1221. [4] 范立民,孙魁,李成,等.西北大型煤炭基地地下水监测背景、思路及方法[J].煤炭学报,2020,45(1):317-329. [5] 陈超,胡振琪.我国采动地裂缝形成机理研究进展[J].煤炭学报,2018,43(3):810-823. [6] BRUNORI C A,BIGNAMI C,ALBANO M,et al.Land subsidence,ground fissures and buried faults:InSAR monitoring of Ciudad guzmán (Jalisco,Mexico)[J].Remote Sensing,2015,7(7):8610-8630. [7] KASAI M,IKEDA M,ASAHINA T,et al.LiDAR-derived DEM evaluation of deep-seated landslides in a steep and rocky region of Japan[J].Geomorphology,2009,113(1/2):57-69. [8] 张兴航,朱琳,王威,等.基于对象的地裂缝分步提取方法研究与应用[J].国土资源遥感,2019,31(1):87-94. [9] 张健,毕银丽,彭苏萍.采动地表裂缝三维形态探测方法及精度评价研究[J].煤炭科学技术,2020,48(9):236-242. [10] 侯恩科,张杰,谢晓深,等.无人机遥感与卫星遥感在采煤地表裂缝识别中的对比[J].地质通报,2019,38(S1):443-448. [11] LIU Zhenqing,CAO Yiwen,WANG Yize,et al.Computer vision-based concrete crack detection using U-Net fully convolutional networks[J].Automation in Construction,2019,104:129-139. [12] SHAHIN M,CHEN F F,MAGHANAKI M,et al.Improving the concrete crack detection process via a hybrid visual transformer algorithm[J].Sensors,2024,24(10):3247. [13] CHUN Chanjun,RYU S K.Road surface damage detection using fully convolutional neural networks and semi-supervised learning[J].Sensors,2019,19(24):5501. [14] 范立民,张晓团,向茂西,等.浅埋煤层高强度开采区地裂缝发育特征:以陕西榆神府矿区为例[J].煤炭学报,2015,40(6):1442-1447. [15] JIANG Xiao,MAO Shanjun,LI Mei,et al.MFPA-Net:an efficient deep learning network for automatic ground fissures extraction in UAV images of the coal mining area[J].International Journal of Applied Earth Observation and Geoinformation,2022,114:103039. [16] CHEN Peng,LI Peixian,WANG Bing,et al.GFSegNet:a multi-scale segmentation model for mining area ground fissures[J].International Journal of Applied Earth Observation and Geoinformation,2024,128:103788. [17] DENG Jianghua,LU Ye,LEE V C.Imaging-based crack detection on concrete surfaces using You Only Look Once network[J].Structural Health Monitoring,2021,20(2):484-499. [18] YE Guanting,QU Jinsheng,TAO Jintai,et al.Autonomous surface crack identification of concrete structures based on the YOLOv7 algorithm[J].Journal of Building Engineering,2023,73:106688. [19] YANG Zhen,NI Changshuang,LI Lin,et al.Three-stage pavement crack localization and segmentation algorithm based on digital image processing and deep learning techniques[J].Sensors,2022,22(21):8459. [20] 肖力炀,李伟,袁博,等.一种基于改进实例分割模型的路面裂缝检测方法[J].武汉大学学报(信息科学版),2023,48(5):765-776. [21] TERVEN J,CÓRDOVA-ESPARZA D M,ROMERO-GONZÁLEZ J A.A comprehensive review of YOLO architectures in computer vision:from YOLOv1 to YOLOv8 and YOLO-NAS[J].Machine Learning and Knowledge Extraction,2023,5(4):1680-1716. [22] WANG Wenhai,XIE Enze,LI Xiang,et al.Pyramid vision transformer:a versatile backbone for dense prediction without convolutions[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision (ICCV).Montreal:IEEE,2021:548-558. [23] WANG C Y,YEH I H,MARK LIAO H Y.YOLOv9:learning what you want to learn using programmable gradient information[M]//Computer Vision-ECCV 2024.Cham:Springer Nature Switzerland,2024:1-21. [24] WANG A,CHEN H,LIU L,et al.Yolov10:real-time end-to-end object detection[J].Advances in Neural Information Processing Systems,2024,37:107984-108011. [25] KHANAM R,HUSSAIN M.Yolov11:an overview of the key architectural enhancements[EB/OL].[2024-02-15].https://www.arxiv.org/abs/2410.17725. |